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1 Introduction

Gridded population estimates can provide an important resource for planning government services, housing and
population censuses, health and education initiatives, household surveys and other programes in situations when
their are no recent census data available. Gridded population estimates can be aggregated to estimate total pop-
ulations for custom areas suited to individual project goals. WorldPop uses two general approaches for producing
gridded population estimates: bottom-up and top-down (Wardrop et al. 2018).

Top-down methods (Stevens et al. 2015) dissaggregate known population totals for administrative units into
gridded population estimates at higher spatial resolution (e.g. 100 m). This approach is best for situations when
reliable population totals for administrative units are available from a recent census or census projections. The
population totals are dissaggregated based on relationships with gridded geospatial covariates that are mapped
consistently across an entire study area or region of interest such as nighttime lights, impervious surfaces, and
distance to city centers. Top-down approaches are not reliable when population totals from a recent census are not
available and population projections are not reliable due to population displacement, time since the last census,
or other reasons.

Bottom-up methods (Leasure et al. 2020b) use population counts from a sample of locations (e.g. from household
surveys) to produce gridded population estimates with full national coverage. This approach is best for situations
when population totals from census are not available but recent household survey data are available with full
enumeration of people in a sample of clearly defined survey locations. Like the top-down method, populations
are estimated based on relationships with gridded geospatial covariates. Bottom-up methods are often based
on Bayesian statistical models that provide robust estimates of uncertainty, whereas top-down models based on
machine learning models (Stevens et al. 2015) do not provide any confidence bounds on population estimates. One
challenge with the bottom-up approach is that it requires geolocated household survey data that can be difficult
to access due to privacy safeguards that must be put in place.

A method is needed that can produce robust gridded population estimates in situations when recent census data
and geolocated household survey data are both unavailable. There are publicly available anonymized household
survey data without specific location information that could be used for this purpose (e.g. IPUMS, DHS). Increasing
availability of building footprints mapped from satellite imagery also provide a valuable source of information.
A statistical method that measures statistical uncertainty for population estimates would be needed because the
inherent uncertainty in population data that are not geolocated will likely produce population estimates with wide
confidence intervals that would be important for end users to be aware of.

Our goal here was to develop a new Bayesian statistical model to estimate the number of households per building
and people per household at sub-national spatial scales. We prioritized the use of publicly available data so that
the method could be replicated across countries more easily. We demonstrated this new approach with a case
study to produce gridded population estimates for Ghana. Our aim was to produce:

1. 100 meter gridded population estimates with national coverage,
2. Estimates of age-sex structure by region and settlement type,
3. Estimates of people per household by geographic unit and settlement type,
4. Estimates of households per building by geographic unit and settlement type, and
5. Robust estimates of uncertainty for population estimates (and other parameters) at any spatial scale.

2 Methods

The total population for an area can be described as a function of the number of buildings:

population = buildings× households

building
× people

household

We develop this equation into a hierarchical statistical model below, but first we will describe the sources of
information needed to inform the parameters on the right side of the equation.
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2.1 Data

Building footprints. We used rasterized counts of buildings within approximately 100 m grid cells across Ghana
(Dooley et al. 2020). These were derived from building footprints for sub-saharan Africa that were extracted from
from recent high-resolution satellite imagery (Ecopia.AI and Maxar Technologies, Inc. 2019–2021) (modal year =
2018, range = 2009 to 2019).

Census microdata. We used microdata samples from the 2010 Ghana census that were publicly available
from IPUMS International (Minnesota Population Center 2019). This provides a count of the number of people
from thousands of housing units with representative national coverage. Each household record is geo-tagged to
geographic areas nested within larger regions. These level 1 and level 2 geographic boundaries (Fig. 1) were
available for download from IPUMS International (Minnesota Population Center 2019).

There were no GPS coordinates associated with these household-level survey data for privacy reasons. The absence
of specific location information is one of the primary challenges to overcome with the statistical model. Geospatial
covariates that are usually fundamental for bottom-up statistical models (Wardrop et al. 2018,Leasure et al.
2020b) cannot be used here because we do not know the exact locations of the household surveys.

We used this to estimate the average number of people per household within sub-national geographic units. We
also used these data to estimate the demographic composition of the populations in these areas by age and sex.
We will assume that these parameters have not changed since 2010 when the census was conducted.

Population totals. We used population totals for level 3 administrative units that were projected to the year
2018 from the last census (WorldPop & CIESIN 2018a). We also used the level 3 administrative boundaries used
for those projections (WorldPop & CIESIN 2018b) (Fig. 1).

We used this to estimate the average number of housing units per building. We used projections to the year 2018
to match the year of the building footprints.

Settlement type. We used the urban and rural classifications of enumeration areas from the 2010 Ghana
census (Ghana Statistical Services 2010). We summarized the original three settlement types into urban and rural
classes based on guidance from Ghana Statistical Services. We assumed that this was the same urban and rural
classification reported in the census microdata from IPUMS International (Minnesota Population Center 2019).

Maps of settlement types, administrative boundaries, and IPUMS geographic regions (Fig. 1) were rasterized to
a 100 m mastergrid matching the building footprints rasters (Dooley et al. 2020).

2.2 Statistical Model

We developed a Bayesian statistical model to estimate the average number of people per housing unit and the
average number of housing units per building from these data.

2.2.1 Indexing

The indexing used throughout the model description (below) is as follows:

Households (h) contained within the IPUMS data. There were a total of 570,234 households from the Ghana census
microdata and we used a representative 70% sample to fit our model (selected at random using the SAMPLE
attribute of the IPUMS data). The remaining 30% was used for out-of-sample model validation.

Age-sex groups (k) that included 36 bins: under 1 year, 1 to 5 years, 80+ years, and 5 year intervals in between
for both males and females.

Settlement type (t) for each enumeration area from the 2010 Ghana census. We summarized these as either urban
(1) or rural (2).

Age-sex regions (r) were defined by the level 1 geographic boundaries from IPUMS (Minnesota Population Center
2019). We estimated the proportion of the population in each age-sex group for urban and rural areas within each
of these 10 regions.
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Figure 1: Geographic units used for modelling.

Household geographies (g) were defined by the level 2 geographic boundaries from IPUMS (Minnesota Population
Center 2019). We estimated people per household for urban and rural areas within each of these 102 geographies.
Population units (u) were defined by the level 3 administrative boundaries from census projections (WorldPop
& CIESIN 2018b). We estimated households per building for urban and rural areas within each of these 170
population units.
Locations (i) are 100 meter grid cells that were used for model predictions.

2.2.2 Population Estimates

To estimate the population for a given location i, we used the following model:

popi ∼ Poisson(bldgi × hpbti,ui
× pphti,gi

)
popi,k ∼ Multinomial(popi, θti,ri,k)

(1)

popi is the total population estimated for location i, and popi,k is the number of people within age-sex group
k. bldgi is the observed number of building footprints at this location. hpb and pph are estimated parameters
measuring households per building and people per household, respectively. In this portion of the model, the only
observed data are the building counts bldgi, settlement type ti, and the three spatial unit IDs (gi, ui, and ri).
Note that we are assuming that the count of building footprints is equivalent to the true count of buildings.
Estimating the parameters hpbt,u, ppht,g, and θt,r,k is the focus of the statistical model developed below.

2.2.3 People per Household (pph)

Single-person households are more common in the Ghana microdata than could be accounted for by a simple Poison
distribution to model household sizes, so we used a Hurdle model (Stan Development Team 2019) to account for
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the one-inflated distribution. This involves two processes:

1. αt,g the probability that a household has only a single-person , and

2. λt,g the number of additional people in multi-person households other than the head of household.

These two parameters are the basis for estimating people per household ppht,g by type and household geographic
unit. The Ghana census microdata (IPUMS 2020) provided the data that we needed to fit this part of the model.
This included a count of people and their ages from a representative sample of households across the country.

We used a beta-binomial model to estimate the probability of a single-person household αt,g in urban and rural
settlement types t in each geographic area g:

singlet,g ∼ Binomial(hht,g, αt,g)

αt,g ∼ Beta( ᾱt

α̃
,

1− ᾱt

α̃
)

(2)

where hht,g is the total number of households surveyed from settlement type t in geography g, and singlet,g is
the total number of single-person households surveyed. αt,g is the probability that a household contains only a
single person. ᾱt is the mean of αt,g among geographies within settlement type t and α̃ quantifies variance among
geographies.

We used a Poisson model with LogNormal overdispersion to estimate the number of people in multi-person house-
holds λt,g (excluding the head of household):

Nh − 1 ∼ Poisson(λh)T (1, )
λh ∼ LogNormal(µt,g, σt,g)

(3)

where Nh is the observed number of people in each multi-person household h from the IPUMS census microdata
and λh is the expected count of household members other than the head of household. We used Nh − 1 as the
response variable so we could use zero-inflation to account for one-inflated distributions of Nh. The Poisson
distribution is truncated below 1 (notated as T) because the beta-binomial model (Eq. (2)) already accounts for
single-person households. µt,g is the mean of λh (on the log scale) among households from settlement type t in
geography g, and σt,g is the variance (on the log scale) among households in settlement type t. We modelled µt,g

and σt,g hierarchically to share information among geographies:

µt,g ∼ Normal(µ̄t, µ̃)
σt,g ∼ Half-Normal(σ̄t, σ̃)

(4)

where µ̄t is the mean value of µt,g among geographies within settlement type t, and µ̃ is the variance among
geographies in both settlement types combined. We used these parameters to estimate a version of λ that was not
constrained by household-level observations:

λ̂t,g ∼ LogNormal(µt,g, σt,g) (5)

When we say that λ̂t,g was not constrained by household-level observations, we mean that it is constant among
households within a settlement type in a given geography. This is neccessary to derive the expected values (i.e. the
means) of people per household to use for population predictions:

E(ppht,g) = 1 + (1− αt,g)λ̂t,g (6)

The priors that we used for parameters in this part of the model were:
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ᾱt ∼ Uniform(0, 1)
α̃ ∼ Uniform(0, 1)
µ̄t ∼ Normal(0, 5)
µ̃ ∼ Uniform(0, 5)
σ̄t ∼ Uniform(0, 5)
σ̃ ∼ Uniform(0, 5)

(7)

Our aim was to use relatively uninformative priors that provided information about the range of possible values
but were not influential on parameter estimates relative to the data.

Just for comparison purposes, another way to write the Hurdle model from Eqs. (2) and (3) is:

p(Nh − 1 | αt,g, λh) =

αt,g if Nh − 1 = 0, and
(1− αt,g) Poisson(Nh − 1 | λh)

1− PoissonCDF(0 | λh) if Nh − 1 > 0,
(8)

See the Stan User’s Guide (Stan Development Team 2019) for more details about the Hurdle model specification.

2.2.4 Demographic Groups

We used a multinomial-Dirichlet model to account for demographic structure in the population:

Mt,r,k ∼ Multinomial(Ṁt,r, θt,r,k)
θt,r,k ∼ Dirichlet(rep(1,K))

(9)

where Ṁt,r is the total number of survey respondents from our IPUMS sample in settlement type t within region
r, and Mt,r,k is the number of respondents within age-sex group k observed in the census microdata. In this
model, the age-sex structure θt,r,k (i.e. proportion of population in each group) is a parameter that is estimated
independently for each region and settlement type. The Dirichlet prior is an uninformative flat prior. K is the
total number of age-sex groups (i.e. K = 36). The Dirichlet distribution produces a vector of probabilities (i.e. one
for each age-sex group) that must sum to one (i.e. to represent the total population).

2.2.5 Households per Building (hpb)

For each population unit u we know the total count of buildings and the estimated total population from census
projections. From the previous model components we also have an estimate of the average number of people per
household for household geographies g and settlement types t within the population unit. Our goal now is to use
these pieces of information to estimate the average number of housing units per building for urban and rural areas
within each population unit u. We accomplished this using the following model:

Ṅu ∼ LogNormal(log(N̄u), Ñu)

N̄u =
T∑

t=1

G∑
g=1

(Bt,u,g × hpbt,u × ppht,g)
(10)

where Ṅu are the estimated total population sizes for unit u that were provided as input data from census projec-
tions (WorldPop & CIESIN 2018a). Bt,u,g is the observed number of building footprints within the intersection
of geography g, population unit u, and settlement type t. We modelled hpbt,u hierarchically using a log-normal
distribution to share information among population units:
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hpbt,u ∼ LogNormal( ¯hpbt,
˜hpb) (11)

where ¯hpbt is the mean of hpbt,u among population units within settlement type t, and ˜hpb is the variance
among population units including both settlement types. These variance terms did not differ significantly among
settlement types, so estimating a single variance parameter produced similar results to estimating them seperately.

2.2.6 Measurement Error in Census Projections

We treated the parameter Ñu from Eq. (10) as measurement error in the projected census totals Ṅu that were
used as input data. We provided estimates of measurement error as an informative prior:

Ñu ∼ LogNormal(log(0.15), 0.5) (12)

Because we did not have information about the uncertainty of the census projections, we designed this prior to be
as vague as possible while still resulting in model convergence. The mean of log(0.15) represents our prior belief
that the projected census totals were within about 25% of the true population totals, on average across population
units u. The standard deviation of 0.5 represents our prior belief that there may have been significantly more
measurement error in some population units (e.g. 100% or more). Because the model is estimating this parameter
for every population unit, the model has the freedom to identify which units have more or less measurement error,
based on information from the rest of the model.

2.3 Model Implementation and Diagnostics

We implemented this Bayesian model using the R statistical programming language (R Core Team 2020) and the
rstan package (Stan Development Team 2020). The model code and input data are provided as supplementary files
that are described in Appendix A. Convergence of MCMC chains (i.e. Markov chain Monte Carlo) was evaluated
using the Rhat metric from the Stan software (Stan Development Team 2019, Stan Development Team (2020)).
We used four MCMC chains with a warmup period of 250 iterations followed by a sampling period of 2500 MCMC
iterations per chain.

We have three types of population data that we can use to evaluate model fit: people per household and people
per age-sex group from the household-level census microdata (Minnesota Population Center 2019) and estimates
of total population per region from projected census totals (WorldPop & CIESIN 2018b).

In general, we assessed model fit using model residuals (observed - predicted) to calculate bias
mean(residuals), imprecision sd(residuals), inaccuracy mean(abs(residuals)), and r-squared percent
variance explained (squared Pearson correlation coefficient). The mean values from posterior predictions were
used for these assessments. We assessed the model’s prediction intervals by calculating the proportion of
out-of-sample observations that were within the prediction intervals. If the prediction intervals were robust,
we expected about 95% of out-of-sample observations to fall inside the 95% prediction intervals and 50% of
observations fall inside of 50% prediction intervals.

We assessed model fit at the household-level using the 30% out-of-sample subset from the census microdata
(Minnesota Population Center 2019). We analyzed residuals for the following parameters:

• αt,g probability of a single-person household,
• λt,g additional household members in multi-person households,
• ppht,g number of people per household,
• θt,r,k proportion of the population in each age-sex group, and
• Ṅu total population per population unit u.

We assessed model fit at the region-level using in-sample data from the projected census totals (WorldPop &
CIESIN 2018a). We generated a posterior predictions for the total population in unit u as:
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ˆ̇Nu ∼ LogNormal(N̄u, Ñu) (13)

Spatial units u where there was a large difference between the modelled population total ˆ̇N and the projected
census totals Ṅ likely indicates that census projections were inaccurate in those units, but it could also indicate
a lack of model fit for that location (i.e. biased estimates of hpbt,u or ppht,g).

3 Results

The model reached full convergence for all parameters based on the Rhat metric used by Stan and there were no
additional warnings about instabilities of means, medians, or tails of posteriors.
Full model results can be downloaded from the WorldPop Open Population Repository (Leasure & Tatem 2020).
This included 100 m gridded estimates with national coverage for:

1. The number of people,
2. The number of people in each age-sex group,
3. The number of households,
4. The average number of people per household,
5. The average number of households per building footprint, and
6. The average number of people per building footprint.

Posterior estimates for total number of people and people per age-sex group can be explored on an interactive map
using the wopr R package and the woprVision web application (Fig. 2) (Leasure, Bondarenko & Tatem 2020). It
is not possible to validate the model predictions at the 100 m grid cell level because we do not have geolocated
population data. The posterior predictions have wide confidence intervals that accurately reflect this uncertainty.

Figure 2: woprVision web application providing access to posterior predictions on an interactive web map
(https://apps.worldpop.org/woprVision; select data ’GHA v1.0’).

3.1 People per household

Analysis of residuals indicated that estimates of people per household were relatively unbiased (-6.4%) but pre-
dictoins were very imprecise (76%) for individual households (r-squared = 0.05). This was expected due to the
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lack of location information from the household data. Despite imprecise household-specific predictions, the overall
distributions of predicted household sizes were representative of household sizes within geographic units and set-
tlement types (Fig. 3). The prediction intervals for people per household were robust with 96.8% of out-of-sample
data falling within the 95% prediction interval and 69% falling within the 50% prediction interval.

Figure 3: Distribution of people per household in geographic unit no. 1 for urban areas (left; t=1, g=1) and rural
areas (right; t=2, g=1).

Estimates of αt,g (bias = 1.3%, imprecision = 19.2%) and λt,g (bias = -1.3%, imprecision = 8.3%) were much
more accurate because they were estimated for larger spatial scales (geographic units g) with r-squared values
of 0.88 and 0.93, respectively (Fig. 4). Remember that αt,g is the probability that a household contains only
a single person and λt,g is the average number of people in a household other than the head of household. We
did not assess the coverage of the prediction intervals for each of these parameters individually because they are
component parts of a mixture distribution representing people per household, which was assessed above.

3.2 Age-sex structure

Estimates of θt,r,k (i.e. proportion of population in each age-sex group) had an r-squared of 0.98 compared to
out-of-sample data (Fig. 5; bias = -6.6%, imprecision = 18%). The slight negative bias was particularly apparent
for estimates of adult males in some geographic units (see Appendix B). The 95% prediction intervals contained
only 48% of out-of-sample data and the 50% prediction intervals contained only 21% of out-of-sample data. The
underestimated prediction intervals may have resulted from the strong constraints of the Dirichlet distribution
requiring the proportions to sum to one.

The population pyramids that resulted from the estimates of theta differed slightly between urban areas and rural
areas (Fig. 6). Urban areas had a wider base indicating a higher proportion of children. Within settlement types,
there were slight differences in population pyramids among geographic units (see Appendix B).

Figures comparing model estimates of people per household and age-sex structure to out-of-sample observations
(like Figs. 3 and 6) are provided in Appendix A for all geographic units.
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Figure 4: Observed versus predicted parameters for estimating people per household.

Figure 5: Observed versus predicted proportion of the population in each age-sex group. The plot shows all age-sex
groups across all regions.
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Figure 6: Population pyramid in region no. 1 for urban areas (left, t=1, r=1) and rural areas (right, t=2, r=1).
Dots are observed out-of-sample data, while bars and their credible intervals are posterior predictions from the
model.

3.3 Census projections

Model estimates of total population in each population unit u were comparable to the projected census totals
used as input data for most areas (r-squared = 0.98), but there were significant divergences in two units (Fig.
7) where the census projections were likely significant underestimates that did not account for urban growth into
these suburban/rural areas. One of the areas was on the north side of the city of Kumasi and the other was west
of the city of Tamale (see results at https://apps.worldpop.org/woprVision; select data “GHA v1.0”).

4 Discussion

The model is a hybrid between commonly used top-down and bottom-up approaches (Wardrop et al. 2018) that
are often used to map populations when complete census results are not available. It is like bottom-up approaches
because it uses household-level survey data that do not have full coverage of the country. It is like top-down
approaches because it uses projected census totals to constrain population estimates. Unlike other top-down
approaches (Stevens et al. 2015), this model enforces a “soft constraint” in which the population totals can
deviate significantly from the census projections provided as input data if the weight of evidence from the rest of
the model suggests the projections are inaccurate. This approach is unlike top-down and bottom-up approaches
because it cannot use high-resolution geospatial covariates other than the count of buildings in each 100 m pixel.

This modelling approach produces high resolution gridded population estimates from publicly available census
microdata that have been standardized across countries by IPUMS International (Minnesota Population Center
2019). The building footprints that are the other critical piece of data have been produced for 51 countries in
sub-Saharan Africa (Dooley et al. 2020,Ecopia.AI and Maxar Technologies, Inc. 2019–2021). This provides an
opportunity to produce rapid population estimates for countries where both data sets are available. We achieved
this by estimating the average number of households per building and the average number of people per household
for urban and rural sub-national geographic units using a hierarchical Bayesian modelling approach. Importantly,
the method accounts for uncertainty which can be significant for approaches like this that do not have detailed

11

https://apps.worldpop.org/woprVision


Figure 7: Census projections versus model predictions of total population sizes in 170 spatial units. The panel on
the right is zoomed in to units with less than 250,000 people.

spatial information associated with the population data, which is the usual situation when using publicly available
data.

This method cannot map variation in people per household or households per building with precision at the 100
m spatial scale because specific locations of households are not available for the census microdata. The model
estimates these parameters for urban and rural settlements in over 100 geographic units across the country, but
it does not attempt to map variation within those units. It accounts for that variation as statistical uncertainty
which results in the population estimates having fairly wide credible intervals. Because we used data from the
2010 Ghana census to estimate the number of people per household and the proportion of the population in each
age-sex group for urban and rural settlements in various regions, we have assumed that the patterns of people per
household and age-sex structure have not changed in these areas since 2010. This was a necessary assumption in
the absence of more recent survey data, but the model can be updated when newer data become available.

We suggest labelling the population estimates as 2018 because this was the most common satellite image acquisition
year (Fig. 8) for imagery used by Maxar Technologies and Ecopia.AI (Ecopia.AI and Maxar Technologies, Inc.
2019–2021) to derive the building footprints. The year of satellite images varied across the country from 2009
to 2019, depending on the exact location. Refer to the raster GHA_buildings_v1_1_imagery_year.tif (Dooley
et al. 2020) for a map of the imagery years of building footprints. We assumed that the building footprints
represented all potentially residential buildings. We did not account for buildings that were missing from the
building footprints or that have since been removed. We did not have quantitative measures of building footprint
accuracy available to us.

We identified a few areas for improvement in this model. The credible intervals for the age-sex structure are not
capturing the full range of variation. One potential solution may be to apply a hierarchical Dirichlet prior to
constrain the population pyramids to share information among regions. The estimated distributions of people
per household appeared not to fit the out-of-sample data for a few geographic units and this warrants further
investigation, particularly to understand the effects of outliers on the one-inflated Hurdle model. It would also
be helpful to conduct a formal sensitivity analysis to assess the influence of the informative prior that we used to
quantify measurement error in the census projections.

In addition to these next steps to improve the method and better understand its nuances, it will be important
to apply it across countries to understand how generalizable it is. Our intention for this approach is to apply it
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Figure 8: Distribution across Ghana of the year of building footprints (Ecopia.AI and Maxar Technologies 2020,
Dooley et al. 2020).

rapidly as a gap-filling measure while efforts are underway to acquire geolocated population data for population
modelling to support development projects, planning for programs, and census preperations. The model’s estimates
of people per household and households per building may also serve as a guide for setting these parameters in the
peanutButter application (Leasure et al. 2020a) for countries where census microdata or other household surveys
are not publically available.

5 Contributing

This report and the methods it describes were produced by Doug Leasure from the WorldPop Research Group at
the University of Southampton with oversight from Andy Tatem. The work was funded by the Bill and Melinda
Gates Foundation to provide critical spatial data and population estimates to support polio surveillance and
eradication (INV-002697). We want to acknowledge Vince Seaman from the Bill and Melinda Gates Foundation
and Kebba Touray from the World Health Organization (AFRO-Polio GIS centre) for facilitating access to data
for this project. We want to thank Edith Darin, Chris Jochem, and Attila Lazar for thoughtful internal reviews
that helped improve the work.

6 Suggested Citation

Leasure DR, Tatem AJ. 2020. A Bayesian approach to produce 100 m gridded population estimates using census
microdata and recent building footprints. WorldPop, University of Southampton. doi:10.5258/SOTON/WP00686

7 License

This report may be redistributed following the terms of a Creative Commons Attribution-NoDerivatives 4.0 In-
ternational (CC BY-ND 4.0) License.

13

doi:10.5258/SOTON/WP00686
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/


8 References

Dooley CA, Boo G, Leasure DR, Tatem AJ. 2020. Gridded maps of building patterns throughout sub-saharan
africa, version 1.1. doi:10.5258/SOTON/WP00677.

Ecopia.AI and Maxar Technologies, Inc. 2019–2021. Digitize Africa Data. Ecopia.AI and Maxar Technologies,
Inc.

Ghana Statistical Services. 2010. Census enumeration area boundaries and urban/rural classification. Accra,
Ghana: Ghana Statistical Services.

Leasure DR, Tatem AJ. 2020. Bayesian gridded population estimates for ghana 2018, version 1.0. WorldPop,
University of Southampton. doi:10.5258/SOTON/WP00680. https://wopr.worldpop.org/?GHA/Population/v1.0.

Leasure DR, Bondarenko M, Tatem AJ. 2020. wopr: An R package to query the WorldPop Open Population
Repository, version 0.3.4. WorldPop, University of Southampton. doi:10.5258/SOTON/WP00679. https://apps.
worldpop.org/woprVision.

Leasure DR, Dooley CA, Bondarenko M, Tatem AJ. 2020a. peanutButter: An R package to produce rapid-
response gridded population estimates from building footprints, version 0.3.0. doi:10.5258/SOTON/WP00681.

Leasure DR, Jochem WC, Weber EM, Seaman V, Tatem AJ. 2020b. National population mapping from sparse
survey data: A hierarchical bayesian modeling framework to account for uncertainty. Proceedings of the National
Academy of Sciences. doi:10.1073/pnas.1913050117.

Minnesota Population Center. 2019. Integrated Public Use Microdata Series, International: Version 7.2 [Ghana
2010]. Minneapolis, MN: IPUMS.

R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation
for Statistical Computing. https://www.R-project.org/.

Stan Development Team. 2019. Stan User’s Guide. https://mc-stan.org/docs/2_23/stan-users-guide.

Stan Development Team. 2020. RStan: the R interface to Stan. R package version 2.19.3. http://mc-stan.org/.

Stevens FR, Gaughan AE, Linard C, Tatem AJ. 2015. Disaggregating census data for population mapping using
random forests with remotely-sensed and ancillary data. PloS one 10:e0107042. doi:10.1371/journal.pone.0107042.

Wardrop NA, Jochem WC, Bird TJ, Chamberlain HR, Clarke D, Kerr D, Bengtsson L, Juran S, Seaman V, Tatem
AJ. 2018. Spatially disaggregated population estimates in the absence of national population and housing census
data. Proceedings of the National Academy of Sciences 115:3529–3537. doi:10.1073/pnas.1715305115.

WorldPop, CIESIN. 2018a. Global High Resolution Population Denominators Project - Funded by The Bill and
Melinda Gates Foundation (OPP1134076). WorldPop, University of Southampton. doi:10.5258/SOTON/WP00651.

WorldPop, CIESIN. 2018b. Global High Resolution Population Denominators Project - Funded by The Bill and
Melinda Gates Foundation (OPP1134076). WorldPop, University of Southampton. ftp://ftp.worldpop.org/GIS/
Population/Global_2000_2020/CensusTables/.

9 Appendix A: Supplementary Data

9.1 Model Data

The attached file data.rds is an R object that can be read into the R environment with the code dat <-
readRDS('data.rds'). It is a list object with an element for each observed variable in the statistical model.

We have replaced the counts of people per household (N) and total population in each age-sex group (M) with NAs
due license restrictions from IPUMS International that prohibit redistribution of these data to protect the privacy
of individuals represented in the data set. You must request access to the data directly from IPUMS International
(https://international.ipums.org/international/).
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9.2 Model Code

The attached file model.stan is a text file that contains the statistical model in the Stan programming language
(Stan Development Team 2019).

10 Appendix B: Supplementary Plots

10.1 Age-sex structure
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10.2 People per household
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