
Census-based gridded population estimates for Burkina Faso (2019),
version 1.0.

WorldPop, University of Southampton

11 January 2021

Contents

1 Introduction 1

2 Estimating Missed Communes 2

2.1 Model Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Estimating Gridded Population for the Entire Country 7

3.1 Model Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Discussion 12

5 Contributions 12

6 License 13

7 Suggested Citation 13

References 13

1 Introduction

In February 2020, the Institut National de la Statistique et de la Démographie du Burkina Faso (INSD) completed
a census exercise aiming at enumerating the entire country population. Due to security issues in the North
and the East regions, some communes (Burkinabe administrative unit level 3) could be only partially covered by
governmental surveyors (38 out of 351 communes). The INSD requested support from the GRID3 (Geo-Referenced
Infrastructure and Demographic Data for Development) project to estimate the unsurveyed population.

In December 2020, the INSD released its provisional census population counts for every communes which consisted
in estimates for the unsurveyed areas, and census count corrected via a post-enumeration survey for the surveyed
areas (Institut National de la Statistique et de la Démographie 2020). Parallel to that traditional publication,
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the INSD released also a high-resolution gridded population estimates, and its breakdown by age and sex group
(WorldPop and Institut National de la Statistique et de la Démographie du Burkina Faso 2021).

The purpose of this methodological document is to explain:

1. The bottom-up modelling used to estimate population totals in incomplete communes

2. The top-down modelling used to disaggregate the published census population totals — a combination of
estimation-based and enumeration-based commune totals — into high resolution gridded estimates

The produced dataset (WorldPop and Institut National de la Statistique et de la Démographie du
Burkina Faso. 2021) can be downloaded from the WorldPop Open Population Repository (https://
wopr.worldpop.org/?BFA/Population/v1.0) and explored on the woprVision data exploration interface
(https://apps.worldpop.org/woprVision/).

2 Estimating Missed Communes

2.1 Model Method

Figure 1: Schema for estimating population in missing communes

The ‘Bottom-up’ modelling followed the hierarchical Bayesian framework developed by Leasure et al. (2020)
estimating population totals using sparse survey data. The method combines geospatial covariates available for
the entire region of study with observed population data available only for a set of small-size clusters. The
estimated relationship is then applied to the grid cells (3 arc-seconds, approximately 100m at the equator) of the
unsurveyed areas to predict the population totals. To ensure consistency with the INSD traditional reporting, the
gridded estimates were then aggregated at the commune level.

The hierarchical probabilistic framework enables to leverage statistical relationships between population and
geospatial covariates from similar settled locations in order to predict elsewhere and to account for uncertainty in
this process. The following equations describe the building blocks of the model:
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Ni ∼ Poisson(DiAi)
Di ∼ LogNormal(D̄i, σl1,l2,l3)

D̄i = αl1,l2,l3 +
K∑

k=1
βkxi,k

αl1,l2,l3 ∼ Normal(11, 3)
βk ∼ Normal(0, 1)

σl1,l2,l3 ∼ TruncatedNormal(0, 1, 0)
with:

• a Poisson distribution to model population count Ni in enumeration area i
• a lognormal distribution to model population density (Di, which is the number of people per settled area in

m2, Ai)
• a hierarchical setting for the variance of the lognormal, σ estimated per level l1, l2 and l3
• a mean of the lognormal, D̄ defined deterministically with a hierarchical slope αl1,l2,l3 , plus a set of K

covariates xk with related coefficients βk

2.2 Model Implementation

2.2.1 Input data

Figure 2: Population density of the selected enumeration areas

2.2.1.1 Population The raw census database consists of the available GPS records for individual and collec-
tive resident households. At the time of the analysis, digital Enumeration Areas (EA) were not available, thus
for modelling purposes, we compute ad hoc EA boundaries as envelopes around the GPS points belonging to the
same enumeration area. A careful selection is then made to remove inaccurate EAs due to error in data collection,
EA miss-attribution, imprecise GPS location or inaccurate GPS recording (due to the location where the surveyor
entered the observation in the device). We implemented the criteria using quantitative metrics such as: the stan-
dard deviation of GPS points for each EA, the number of observations falling in one grid cell, the people/building
ratio and the people/settled area ratio.
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The final database used for modelling contains 15 817 EAs which represents 69% of the raw database.

To prevent overestimating population in unsurveyed communes, we removed from every EAs individuals that were
recorded as migrants and originated from the unsurveyed communes. This provides us with a baseline population
where displacement from the insecure communes is temporary ignored and tackled at a later stage.

2.2.1.2 Building footprints A core covariate in our model is the building footprints layer provided by
Ecopia.AI and Maxar Technologies (2019). It is a satellite-imagery-based features extraction at 5m and gives
a precise estimate of the built-up area in Burkina Faso. Figure 3 illustrates this for an area in Ouagadougou.

Figure 3: Example of the building footprints in Ouagadougou

From the building footprints we can calculate the settled area of each EA (i.e. the sum of each building area).
During the model fitting, this is used to calculate population densities (people per settled area) from the observed
counts.

The building footprints layer also provides the subset of grid cells for which to predict population count. We
predict population only for the grid cells considered as settled, that contains at least one building from the
building footprints layer.

2.2.1.3 Geospatial covariates To study Burkina Faso spatial population distribution, we selected 5 covari-
ates from different sources based on their assumed correlation to population densities and on shared range of
values between the EA level dataset and the grid cell level dataset.

The final set of covariates is:

• the count of buildings in a 5km buffer derived from the building footprints layer (Ecopia.AI and Maxar
Technologies 2019)

• the distance to temporary rivers and secondary roads provided in the Base Nationale de Données To-
pographiques (Institut Géographique du Burkina Faso 2015)

• the friction surface used for the Access to Cities project (Weiss, Nelson, Gibson, Temperley, Peedell, Lieber,
Hancher, Poyart, Belchior, Fullman, and others 2018)

• the UN-adjusted unconstrained gridded estimates from WorldPop that disaggregated the Burkina Faso 2019
census projections (WorldPop Research Group, University of Southampton et al. 2018)
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For classifying settlement consistenly with census definition, we used the labelling of each EA in the census database
as urban or rural to produce a settlement type prediction at grid cell level.

More precisely, we used the caret R package (Kuhn et al. 2020) to fit a Gradient Boosting Machine with two
covariates, distance to high urban settlement (Institut Géographique du Burkina Faso 2015) and building count in
a 500m window (Ecopia.AI and Maxar Technologies 2019). The area under the curve metric of the classification
model is 0.98, indicating an almost perfect fit.

2.3 Model results

2.3.1 Implementing the model

The final models is composed of three nested levels for modelling population density: the modelled settlement
type, the regions (Burkinabe administrative unit level 1) and the communes.

Model fit was done using the Stan software (Carpenter et al. 2017). Implementing scripts and distribution
of estimated parameters can be found on Github: https://github.com/wpgp/BFA_population_v1_0_methods/
tree/main/supplements.

To provide population totals for the unsurveyed communes, we aggregated the gridded bottom-up estimates using
official boundaries (Institut Géographique du Burkina Faso 2015). Finally the estimated population totals were
corrected for displacement based on the observed census migration status data. We added the migrants that were
discarded when processing the census individual database (cf. Section 2.2.1.1) to the commune where they were
enumerated and removed them from the unsurveyed commune where they were migrated from.

The model fit and prediction were done in R version 3.5.1., using the package rstan (Stan Development Team
2020), sf (Pebesma et al. 2020), raster (Hijmans et al. 2020), dplyr (Wickham et al. 2020), data.table (Dowle et
al. 2020) and doParallel (Wallig et al. 2020).

2.3.2 Assessing the model goodness-of-fit

Prediction power of the final model is first assessed using a training dataset (70%) to fit the model and a test
dataset (30%) to estimate the goodness-of-fit. The correlation between predictions and observations is 0.8. 95%
of the test observations are in their 95% confidence interval. Bias (mean of residuals) is 45 people, imprecision
(standard deviation of residuals) is 263 people and inaccuracy (mean of absolute residuals) is 169.

The second assessment was undertaken on the population totals for the completed communes, totals that were
corrected with omission rates from the post-enumeration survey. This reference data enables us to test the
sensitivity of the estimates to the selection process, more precisely two crucial steps:

1. Drawing EA boundaries around GPS points. We have tested two alternative scenarios:

1. using a 25m buffer around the GPS points in Ouagadougou, a 25 m buffer in Saaba et Bobo-Dioulasso
and a 100m buffer in the remaining zones;

2. using a 20m buffer around the GPS points in Ouagadougou, a 25m buffer in Bobo-Dioulasso and Saaba,
a 80m buffer in other urban areas and a 120m buffer in rural areas.

2. Selecting the threshold used to discard EA based on the population density. We have tested two alternative
options:

1. fixed national threshold and
2. custom thresholds based on the maximum population density per admin 2.

To assess the predicted totals, we compute a targeted Root Mean Squared Error for the complete communes nested
in incomplete region:
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Figure 4: Scatterplot of observed vs. predicted population count on test EAs. Red
line shows perfect prediction

Table 1: Sensitivity analysis results on predicted totals

Selection procedures EA (%)* RMSE†

Delineation Density threshold
Scenario 1 0.16 5 12 163
Scenario 2 0.16 4 10 871
Scenario 2 0.9 x maximum 7 9 966
Scenario 2 0.8 x maximum 9 9 745
* Additional EAs discarded because of
selection procedures (in percentage)
† RMSE was compiled over the complete communes
from incomplete regions

√
[ 1
n

∑
i

(ŷi − yi)2]

where n is the number of complete communes in incomplete regions (n=141), yi the observed census population
totals for commune i and ŷi the predicted population totals for commune i.

Table 1 shows that differentiating the size of the buffer between urban types does improve the goodness-of-fit.
Furthermore choosing a resident density threshold based on the admin 2 maximum resident density succeeds in
giving a more representative EA dataset that increase the external goodness-of-fit. Final model is represented in
bold.
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3 Estimating Gridded Population for the Entire Country

3.1 Model Method

Figure 5: Schema for estimating gridded population for the entire country

To disaggregate the released communes census count into high-resolution gridded estimates, we adapted the
dasymetric mapping explained in Stevens and al. (2015) using the openly accessible scripts written by Bondarenko
and al. (2018). The method consists in modeling population density by combining geospatial and remotely-sensed
data in a Random Forest framework. This framework is chosen for its great predictive performance, the absence
of complicated tuning parameter and its robustness to multicolinearity and multi-scale issues in the predictors
(Robnik-Šikonja 2004).

Once the model is fitted at administrative level, it is then applied to each grid cell to obtain prediction of population
density at a 100m x 100m resolution. This predicted density is then used as a weighting layer to disaggregate
census population counts into the settled pixels based on a building footprint dataset from Ecopia.AI and Maxar
Technologies (2019). The census counts are thus unevenly distributed across space to better reflect heterogeneous
human settlement patterns.

3.2 Model Implementation

3.2.1 Input data

3.2.1.1 Population The officially released population counts at commune level, displayed in Figure 6 combine
the surveyed totals (adjusted with post-enumeration survey non-respondent rates) and the estimated bottom-up
totals.

The census provisional results include also an age and sex decomposition in 18 five-years-groups at national level
(Institut National de la Statistique et de la Démographie 2020). These will be used to create the age and sex
rasters.
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Figure 6: Map of commune population totals

3.2.1.2 Building footprints The building footprints layer was already presented in Section 2.2.1.2. For the
disagregation exercise we derived four building attributes in addition to building count and settled grid cells,
namely:

1. Building area
2. Building perimeter
3. Nearest neighbour distance
4. Nearest neighbour proximity (1/distance)

The above building attributes are summarised at grid cell level using eight aggregation methods: mean, median
(med), standard deviation (sd), mean absolute deviation (mad), minimum, maximum, relative standard deviation
(mean/sd) and relative mad (mad/med). Metrics based on the standard deviation or mean absolute deviation
indicate the level of heterogeneity of the pixel.
Despite the seemingly similarities between some building-footprints derived covariates, the underlying goal is to
increase weak signals for the Random Forest modelling whose predictions will not be impacted by high level
correlation (Genuer, Poggi, and Tuleau-Malot 2010).

3.2.1.3 Geospatial covariates In addition to spatial settlement characteristics (contained in the building
footprints), we use geospatial covariates to explain the broader context of population distribution.
We constructed 27 additional covariates from six data sources:

• 3 from the covariates mapped by the Malaria Atlas Project for their ‘Accessibility to cities’ and ‘Housing
in Africa’ projects: travel time in 2015, friction surface in 2015 (Weiss, Nelson, Gibson, Temperley, Peedell,
Lieber, Hancher, Poyart, Belchior, Fullman, and others 2018) and mapping of improved housing conditions
in 2015 (Tusting et al. 2019).

• 4 from the climatic covariates from the Climatic Research Unit: temperature, precipitation, cloud cover and
wetness (Harris et al. 2020)

• 9 from the ESACCI land cover classification (Buchhorn et al. 2020), divided in the 9 overarching classes for
which we computed the grid-cell-based distance
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• 3 from the settlement extent (Center for International Earth Science Information Network and Novel-T 2020)
classified in 3 types (hamlet, small settlement, built-up areas) for which we computed the grid-cell-based
distance

• 5 from the Base Nationale de Données Topographiques (Institut Géographique du Burkina Faso 2015): the
rivers network, the roads network and the settlement points classified in three types according to their urban
status (low, middle, high), for which we computed the grid-cell-based distance

• the WorldPop gridded census projection of 2019 (WorldPop Research Group, University of Southampton et
al. 2018)

3.3 Model Results

3.3.1 Implementing the model

To model the relationship between census data and the entire set of covariates, we transform the population count
into population density by dividing it with the area of all settled grid cells in the commune and then log-transform
it (Forrest R. Stevens et al. 2015). We then average the covariates using zonal mean for every communes. The
procedure developed in Bondarenko et al. (2018) was used to both tune the Random Forest model and select
covariates using their importance score to speed up the per-pixel prediction.
Once the model is fitted at commune level, we use it to predict the population density for each grid cell. This
predicted density is then used as a weight to disaggregate the total population count for each commune. The
disaggregated gridded population estimates are multiplied by the age and sex proportions from the national
demographic pyramid to estimate population counts per age and sex group for each grid cell.
The code for the model fit and prediction can be found on Github: https://github.com/wpgp/BFA_population_
v1_0_methods
The fit and the prediction were done in R version 3.5.1., using the package randomForest (Cutler and Wiener
2018), sf_0.9-5 (Pebesma et al. 2020), raster (Hijmans et al. 2020), dplyr (Wickham et al. 2020), data.table
(Dowle et al. 2020) and doParallel (Wallig et al. 2020).

3.3.2 Assessing the model goodness-of-fit

Covariates importance We assess the importance of a predictor by showing the relative increase in the mean
square error when the predictor is removed from the model. The order of magnitude might not be robust to the
collinearity observed in the covariates set but the relative ranking is (Genuer, Poggi, and Tuleau-Malot 2010).
Figure 7 shows that the mean building count per pixel is by far the most important predictor, followed by the
gridded population projections from WorldPop that informs population distribution from previous censuses. The
presence in the top 25 covariates of different land cover classes confirms previous findings on the predictive power
of land classification (Lloyd et al. 2019).
An interesting additional feature is the strong predictive power of building-derived metric depicting heterogeneity
in a grid cell (standard deviation -sd-, mean absolute deviation -mad-, coefficient of variation -cv- and relative
mean absolute deviation -mdcv-).
Assessing the model A metric that is commonly used to assess a Random Forest model is the percentage of
variance explained (Liaw and Wiener 2002). It corresponds to the “out-of-bag” mean squared error divided by
the variance of the observations:

1 −
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

whre yi is the observed population totals for commune i with ȳ its corresponding average and ŷi is the predicted
population totals for commune i on a test dataset.
In our model the percentage of variance explained is equal to 70.1%. For comparison the model developed by
Stevens et al. (2015) for Burkina Faso using census projections and a standardised set of covariates (Lloyd et al.
2019) had a percentage of variance explained of 59.1%1.

1See Burkina Faso 2019 in http://dx.doi.org/10.5258/SOTON/WP00645 for more details.
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Figure 7: Top 25 Covariates importance in the Random Forest model

The difference is explained by the custom set of covariates used in our model, especially the one derived from the
building footprints, and the restriction of population estimation and prediction to the settled grid cells.

Assessing the prediction In Stevens and al. (2015) external validation was undertaken by applying the modelling
process to a coarser census scale and then aggregating predicted population per pixel at the finer census unit to
compare it with census results. However in Burkina Faso, the coarser administrative unit after the commune is
the province level that has only 45 units. We considered this sample size too small to perform a meaningful model
assessment of the Random Forest modelling.

Nonetheless, we had access to the raw census database where household GPS points provide a geo-tagging of
enumeration areas across the country. Thus, this offers the possibility to check the model performance at a fine
spatial scale. We manually selected a subset of 50 enumeration areas across the country in different settlement
settings based on the visual assessment of the satellite imagery. We then computed a predicted population by
summing up the corresponding grid cells and performed a comparison analysis based on the relative prediction
error (Figure 8 and 9):

ŷ − y

y
∗ 100

where ŷ is the predicted and y the observed EA population count.

Figure 9 shows an average bias of the prediction of -3%. Imprecision (std. of relative error) is 27% and inaccuracy
21% (mean of the absolute relative error).

The greater prediction errors are occurring in rural area as shown by the spatial distribution of the settled cells
without clear geographical clustering (Figure 8).
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Figure 8: Spatial distribution of the relative prediction errors. Dots shows the location
of the selected EAs. The colours show the ranges of predictive errors. Settled pixels
are shown in yellow.

Figure 9: Distribution of the relative prediction errors.Grey bars represent each of
the 50 selected EAs.The orange line shows the location of the 0% error, the black line
summarises the overall error distribution.
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4 Discussion

The assumptions and limitations of this study can be summarised by topics.
Country extent Administrative boundary datasets include the entire surface of the country. Any settled grid
cells outside of the boundaries from the Base Nationale de Données Topographiques (Institut Géographique du
Burkina Faso 2015) were not included.
Data date Although the input data have varying reference years, the estimates should be considered as repre-
senting late 2019 as thisis the date of the census data collection.
Settlement type The population counts in areas with primarily non-residential buildings may be over-estimated.
Caution should be taken when using the population data in industrial (and other primarily non-residential) areas.
Furthermore little variation can be modelled for densely populated urban areas. This is due to the scale of the
input data used to fit the model, namely at administrative level 3, that does not capture well variation in a dense
city such as Ouagadougou. Therefore precautions shall be taken when focusing the analysis in urban zones.
Building footprints We assume that the building footprints data is accurate and that each building polygon
corresponds to a building structure. However the date of the satellite imagery spans from 2009 to 2019 (see Figure
10). The estimated population counts may be inaccurate in areas where the imagery is old and buildings have
recently been constructed. This issue was observed in the towns of Zorgho, Bâtié and Nanoro. But it is minimized
by old satellite imagery being only used in remote area.

0%

10%

20%

30%

<2016 2016 2017 2018 2019

Figure 10: Satellite imagery date used for extracting building footprints by Ecopia.AI,
and Maxar Technologies. (2019)

Discrete population pattern Administrative boundaries are visible in the disagregated estimates whereby sharp
population differences can be found for neighboring grid cells along the administrative unit delimitation. This is
the consequence of the dasymetric top-down disagregation which ensures that the sum of every grid cells of the
administrative unit does match with the total provided.
Modeled population The population that is predicted is the de jure resident population as defined by the INSD,
that is planning in staying or having stayed already six months at the place where the census is taking place. This
population dataset represent neither the ambient population, nor captures internal migration below the commune
level.
Age and sex pyramid The age and sex proportions are released by the INSD at the national level, therefore no
subnational variations in proportion were considered for the gridded estimates.
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