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Abstract 

This data release provides gridded population estimates (spatial resolution of 3 arc-

seconds, approximately 100-metre grid cells) for Kwilu Province in the Democratic 

Republic of Congo (DRC), along with estimates of the number of people belonging to 

various age-sex groups. The project team used the Pre-Distribution Registration 

Survey (PDRS) data from the National Malaria Control Programme (PNLP) collected 

as part of anti-malarial campaigns in the DRC for 2022 as well as settlement extents 

and geospatial covariates, to model and estimate population numbers at grid cell level 

using a Bayesian hierarchical statistical modelling framework. The approach facilitated 

accounting for the multiple levels of variability within the data while simultaneously 

quantifying for uncertainties in parameter estimates. These model-based population 

estimates can be considered as most accurately representing the year 2022, which is 

the period following the PDRS survey data collection for Kwilu. Although the methods 

were robust enough to explicitly account for key random biases and adjust for potential 

systematic biases within the observed datasets, it is important to note that some 

systematic biases arising from other sources may remain. 

 

These data were produced by the WorldPop Research Group at the University of 

Southampton. The work was part of the GRID3 – Phase 2 Scaling project, with funding 

from the Gates Foundation (INV-044979). Project partners included GRID3 Inc, the 

Center for Integrated Earth System Information (CIESIN) within the Columbia Climate 

School at Columbia University, and WorldPop at the University of Southampton. A 

robust Bayesian joint (hurdle) population modelling approach was developed to 

estimate population density whilst at same time accounting for probability of settlement 

detection. The final statistical modelling was conceived, designed, and implemented 

by Chris Nnanatu. Data processing was done by Ortis Yankey, while project oversight 

was provided by Attila Lazar, and Andy Tatem. The PDRS data from the malaria 

insecticide treated net (ITN) distribution campaigns were collected, processed, 

anonymised, and shared by the PNLP and the implementing partners. The settlement 

extent data was prepared and shared by CIESIN (2024). The data has been clipped 

to Grid3-CIESIN health area extent (CIESIN, 2025) 

 

The authors followed rigorous procedures designed to ensure that the used data, the 

applied method and thus the results are appropriate and of reasonable quality. If users 



encounter apparent errors or misstatements, they should contact WorldPop 

at release@worldpop.org.  

 

WorldPop, University of Southampton, and their sponsors offer these data on a "where 

is, as is" basis; do not offer an express or implied warranty of any kind; do not 

guarantee the quality, applicability, accuracy, reliability or completeness of any data 

provided; and shall not be liable for incidental, consequential, or special damages 

arising out of the use of any data that they offer. These data are operational population 

estimates and are not official government statistics. 

 

RELEASE CONTENT 

1. COD_Kwilu_province_population_v4.2_gridded.zip 

2. COD_Kwilu_province_population_v4.2_agesex.zip 

 

LICENSE 

These data may be redistributed following the terms of a Creative Commons 

Attribution 4.0 International (CC BY 4.0) license. 

 

SUGGESTED CITATION 

Nnanatu C., Yankey O., Chaudhuri S., Chamberlain H., Lazar A. N., Tatem A. J. 

2025. Bottom-up gridded population estimates for Kwilu Province in the Democratic 

Republic of Congo (2022), version 4.2. WorldPop, University of Southampton. doi: 

https://dx.doi.org/10.5258/SOTON/WP00779  

 

 

FILE DESCRIPTIONS 

The projection for all GIS files is the geographic coordinate system WGS84 (World 

Geodetic System 1984). Kindly note that while this data represents population counts, 

values contain decimals, i.e. fractions of people. This is because both the input 

population data and age-sex proportions contain decimals. For this reason, it is 

advised to aggregate the rasters at a coarser scale. For example, if four grid cells next 

to each other have values of 0.25 this indicates that there is 1 person somewhere in 

those four grid cells. 

 

COD_Kwilu_province_population_v4_2_gridded.tif 

This geotiff raster contains estimates of total population size for each approximately 

100-metre grid cell (0.0008333 decimal degrees grid) across Kwilu Province. The 

values are the mean of the posterior probability distribution for the predicted population 

size in each grid cell. Grid cells with values of 0 represent areas that were mapped as 

unsettled according to building footprints data.  

 

COD_Kwilu_province_population_v4_2_lower.tif 

This geotiff raster contains estimates of the lower bound credible interval (2.5% CI) for 

each grid cell across Kwilu. The values are the 2.5% posterior probability distribution 
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for the predicted population size in each grid cell obtained as part of the 95% credible 

interval of the posterior probability distribution. The lower bound estimates cannot be 

summed across grid cells to produce a lower credible interval measure for a multi-cell 

area. Grid cells with values of 0 represent areas that were mapped as unsettled 

according to building footprints data.  

  

COD_Kwilu_province_population_v4_2_upper.tif 

This geotiff raster contains estimates of the upper bound credible interval (97.5% CI) 

for each grid cell across Kwilu. The values are the 97.5% posterior probability 

distribution for the predicted population size in each grid cell obtained as part of the 

95% credible interval of the posterior probability distribution. The upper bound 

estimates cannot be summed across grid cells to produce an upper bound credible 

interval measure for a multi-cell area. Grid cells with values of 0 represent areas that 

were mapped as unsettled according to building footprints data. 

 

COD_Kwilu_province_population_v4_2_agesex.zip 

This zip file contains 40 geotiff rasters at a spatial resolution of 3 arc-seconds 

(approximately 100-metre grid cells). Each raster provides gridded population 

estimates for an age-sex group per grid cell across Kwilu. We provide 36 rasters for 

the commonly reported age-sex groupings of sequential age classes for males and 

females separately. These are labelled with either an “m”(male) or an “f” (female) 

followed by the number of the first year of the age class represented by the data. “f0” 

and “m0” are population counts of under 1-year olds for females and males, 

respectively. “f1” and “m1” are population counts of 1- to 4-year-olds for females and 

males, respectively. Over 4 years old, the age groups are in five-year bins labelled 

with a “5”, “10”, etc. Eighty-year-olds and older are represented by the groups “f80” 

and “m80”. We provide four additional rasters that represent demographic groups 

often targeted by programmes and interventions. These are “under1” (all females and 

males under the age of 1), “under5” (all females and males under the age of 5), 

“under15” (all females and males under the age of 15) and “f15_49” (all females 

between the ages of 15 and 49, inclusive). These data were produced using age-sex 

proportions from the 2024 WorldPop Global subnational population pyramids for the 

DRC. The age-sex proportions are available per a given province. Hence, we applied 

the age-sex proportions for Kwilu to the gridded population estimates 

(COD_Kwilu_province_population_v4_2_gridded.tif) to allocate the population to the 

different age-sex classes. 

 

  



RELEASE HISTORY 

Version 4.2 (13 March 2025) 

• This is the original release of the data for Kwilu Province [doi: 

10.5258/SOTON/WP00779] (as described in this release statement).  

• This data release utilizes operational National Malaria Control 

Programme data, composite, openly accessible building footprint datasets and 

a new mastergrid.  

• This data is released as part of a collection of population estimates for 11 DRC 

provinces: https://wopr.worldpop.org/?COD/Population/v4.2  

 

 

ASSUMPTIONS AND LIMITATIONS 

 

The key assumptions upon which the statistical modelling techniques developed and 

implemented here are based upon are: 

1) The PDRS data provide complete counts of people within the Kwilu Province. 

2) Missing households within the PDRS data were either missed completely at 

random (MCAR) or simply missing at random (MAR), thus median imputation 

was used to impute missing household sizes at household levels before 

aggregation to the modelling unit. 

3) Sources of biases within the PDRS data are mostly random which could be 

accounted for by using appropriate random effects within the statistical models. 

4) The presence of zero building counts within the settlement data could be 

because of imperfect detection within the settlement data which could be 

accounted for by jointly modelling the detection probability.  

5)  All geospatial covariates are accurately detected and processed. 

 

Despite the robust statistical technique utilised here, below are some limitations that’s 

worth highlighting: 

1) These population estimates most likely represent the 2022 time, but because 

of the different ages of the input data used to build the model, a precise time 

point could not be allocated. The PDRS data that was used as the response 

variable was collected in 2022, while geospatial covariates data were collected 

from different time periods between 2020 and 2023. Similarly, the CIESIN 

settlement layers were produced in 2024. The inherent heterogeneity in the 

temporal alignment of these datasets used in the modelling may introduce 

additional uncertainties in the parameter estimates. 

2) Data on the number of people per household (household size), collected during 

ITN distribution campaigns, was aggregated to calculate total population count 

for a given spatial unit. Given that the number of ITNs received per household 

is proportional to the household size, there is an incentive for the respondents 

to potentially provide incorrect counts of population per household in an attempt 

to either get more or less number of ITNs. The presence of incorrect household 

https://wopr.worldpop.org/?COD/Population/v4.2


sizes in the input population data may introduce systematic biases in the 

modelled estimates.  

3) Where there are unrealistically high values of input population data and/or very 

low number of settlements (especially in rural areas), the tendency of 

unrealistically high predictions of population estimates across the affected grid 

cells is usually high. High input population number and/or low building count 

from the CIESIN settlement layer could be because of imperfect detection due 

to tree canopy or cloud cover, for example.  

4) Although the model draws upon recent datasets and geospatial covariates 

which could reflect current population density and distribution, the model does 

not explicitly account for external factors such as migration, displacement, or 

sudden demographic changes, which could significantly influence population 

dynamics. Consequently, the estimates may not fully reflect dynamic population 

shifts occurring beyond the scope of the input data. 

 

Grid cell alignment is based on a mastergrid. Note that this version's (v4.2) mastergrid 

aligns with version 4.1 and 4.2 but does not align with previous DRC gridded 

population layers, namely versions v1.0, v2.0, v3.0. We updated the mastergrid in 

2024 to ensure grid cell alignment across all new WorldPop data products. 

 

SOURCE DATA 

The key datasets used to produce the modelled population estimates are: 

  

PDRS Data 

The input population dataset used for the population modelling for Kwilu Province was 

the PDRS malaria bednet campaign data. The PDRS dataset, which was collected in 

2022, provided detailed information on a given household for which a bednet was 

issued, such as the household size, the number of bednets issued, the number of 

children in the household, the number of males, and the number of females, among 

others. Although the malaria bednet campaign was designed to distribute bednet to 

every household within the province, a preliminary exploratory data analysis carried 

out on the PDRS data indicated that some households were not visited during the 

campaign, while others were not completely covered.  

The GPS points of all households within the province were provided in the PDRS data. 

We implemented population modelling for small spatial units, utilising unofficial 

boundaries similar to census enumeration areas ("pre-EAs"; Qader et al., 2024). The 

household-level data on population counts was spatially aggregated to these spatial 

units, by summing the household size data for all GPS points within each pre-EA 

boundary.  

 

Settlement Data 

Settlement data was provided by CIESIN in the form of raster files (CIESIN, 2024). 

We obtained two different settlement products, namely (i) settlement area, which 

indicates the area of all buildings whose centroid falls within a given cell, and (ii) 



building count (Figure 1B), which is the number of building centroids within a given 

cell. Each of these settlement layers was used in separate analyses together with the 

observed population count and ancillary geospatial data in robust statistical modeling. 

After using each settlement layer in the analysis, we compared model metrics and the 

gridded population layer from both layers. Settlement building count provided more 

realistic population numbers at the gridcell level and hence was retained for the final 

population predictions. 

 

Geospatial Covariates 

A wide variety of geospatial covariates, which are related to population density and 

distribution, were considered in the modelling. These geospatial covariates include 

land use and land cover data, climate variables such as temperature and rainfall, 

physical features and infrastructure such as roads and schools, and conflict data. Final 

population model covariates were selected using a generalized linear model (GLM) 

based stepwise selection method. The selected covariates were further assessed for 

multi-collinearity and statistical significance. Eventually, of the 80 geospatial 

covariates initially tested, 3 were retained as the best fit covariates with variance 

inflation factor (VIF) of less than 5. The descriptions of these final geospatial covariates 

are presented in Table 1 below. 

 

Table 1. Selected geospatial covariates for the modelling. 

 

Description Source Link/Reference 

 

Euclidean distance to water bodies 2021(x1) WorldPop Woods et al (2024) 

 

Euclidean distance to OSM educational 

facilities 2023 (x2) 

OSM https://www.openstreetma

p.org/#map=3/68.59/70.05 

Euclidean distance to OSM places of 

worship 2023(x3) 

OSM https://www.openstreetma

p.org/#map=3/68.59/70.05 

 

Age-Sex Proportions 

We used the 2024 WorldPop Global subnational population pyramids (Bondarenko 

et al 2025) to calculate the age-sex proportions for Kwilu. We multiplied our gridded 

population estimates (COD_Kwilu_province_population_v4_2_gridded.tif) by the 

age-sex proportions(grouping) to produce 

COD_Kwilu_province_population_v4.2_agesex.zip. 

 

 

  



METHODS OVERVIEW 

The key steps of our approach were as follows: 

 

• Cleaning and summarizing the household sizes from the PDRS dataset to get 

the total population at the pre- enumeration area (pre-EA) level (Qader at al. 

2024).  

• Household sizes from the PDRS data point ranged between 0 and 20. Out of 

1196306 PDRS data points, 6714 data points had a household size of 0. Points 

with a household size of 0 were imputed using the median household size for 

the province. 

• Geospatial covariates were subjected to robust covariate selection for model 

training and parameter estimation. 

• An advanced Bayesian hierarchical joint (hurdle) modelling framework was 

developed and implemented using the INLA-SPDE approach (Lindgren et al. 

2011) to easily address issues of settlement detection biases and readily 

quantify uncertainties. 

• Datasets were used to train population density and detection probability models 

at EA levels which were eventually used to predict populations at grid cell level 

using the grid cell values of the covariates selected at the model training level 

as well as the corresponding building counts. 

• Prior to model training, the input population data was aggregated to 14,283 EAs 

with values ranging from 1 to 29,435 per grid cell with a median value of 398 

people per EA. However, there were 2,490 (~17%) EAs without population 

counts and these were set as NAs. 

• The total building counts for the EAs ranged between 0 to 4687 with a median 

value of ~58 buildings per EA. There were no NAs, but 916 EAs had no 

buildings observed. 

• The density variable calculated as people divided by the number of buildings 

per EA, returned infinite values wherever the denominator (building counts) has 

a value of zero. The infinite values were set to NAs so that their values could 

be estimated. 

• After model training, covariate values found to contain high number of missing 

values or covariates with extreme values of z-scores (exceeding 4.5) were 

dropped. The models were then retrained using the final covariates retained 

before proceeding to the final predictions at the grid cells.  

• Best fit covariates were selected for the density model, and these were also 

assumed to equally predict settlement detection probability. Thus, the same set 

of covariates were used for both models.  

  



Statistical Modelling 

Model set up 

Usually, in bottom-up population modelling (Leasure et al. 2022, Boo et al., 2022; 

Darin et al., 2022, Nnanatu et al. 2022), a Poisson probability distribution is used to 

describe the distribution of the population count 𝐶𝑖 with the mean parameters 

decomposed into building count 𝐵𝑖 and average population density 𝜇𝑖, that is, 

𝐶𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝐵𝑖)                          (1) 

instead of a single mean parameter 𝜆𝑖 > 0. The reason for this is because a Poisson 

distribution requires that the mean and the variance of the random variable be equal. 

However, this is rarely the case in most practical situations especially within the 

context of population modelling where issues of overdispersion are a common place. 

Besides, the use of multiple component parameters ensures that we could account for 

spatial aggregation error.  

Typically, robust estimates of population are obtained by first modelling population 

density 𝐷𝑖 and then estimate the corresponding population counts thereafter using the 

relationship 𝐷𝑖 = 𝐶𝑖/𝐵𝑖 or 𝐶𝑖 = 𝐷𝑖 × 𝐵𝑖. Here, the population density is assigned a 

Gamma distribution with mean and variance of 𝜇𝑖 and 𝜙, respectively. That is, 

𝐷𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎 (
𝜇𝑖

2

𝜙
,
𝜇𝑖

𝜙
)                       (2) 

However, when the building counts are susceptible to imperfect detection due to 

factors such as tree canopy and cloud covers, it makes sense to take this into account 

while developing the population modelling. Nnanatu et al. (2024) developed an 

approach for addressing such systematic bias in settlement data in the context of 

Papua New Guinea by explicitly integrating building count model within the bottom-up 

population modelling framework (Nnanatu et al., 2024). However, in the present 

context, other factors other than obscured satellite observations, e.g., human error, 

could lead to settlement data imperfect detection, thus, the integration of settlement 

data detection probability would be appropriate.  

To do this, we assume that the value of the population density is governed by 

settlement detection binary variable 𝑧𝑖 defined as  

                             𝑧𝑖 = {
1, 𝑖𝑓 𝐵𝑖 > 0
0, 𝑖𝑓 𝐵𝑖 = 0

                                            (3) 

so that adjusted population density �̃�𝑖 = 𝑧𝑖𝐷𝑖 which is defined as 

                       �̃�𝑖 = {
�̃�𝑖 , 𝑖𝑓 𝐵𝑖 > 0
𝑁𝐴, 𝑖𝑓 𝐵𝑖 = 0

                                      (4) 

follows a Gamma distribution 



                     �̃�𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎 (
𝑝𝑖

2𝜇𝑖
2

𝜙
,
𝑝𝑖𝜇𝑖

𝜙
)                                    (4) 

with mean and variance of 𝑝𝑖𝜇𝑖 and 𝜙, respectively; where 𝑝𝑖 is the probability that a 

given location or spatial unit 𝑖 contains settlement, that is, the mean of the settlement 

detection variable 𝑧𝑖 with a Bernoulli (or Binomial with number of trials of 1) probability 

distribution given by  

                                                 𝑧𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖)                                         (5) 

So that, 

                                      𝑝𝑖 =
eα+βX+fZ+ζi

1 + eα+βX+fZ+ζi
                                      (6)  

where 𝛼, 𝛽, 𝑋, 𝑓, and 𝑍 are the intercept parameter, a vector of fixed effects coefficients 

of the geospatial covariates contained in the design matrix X, the functions for 

modelling random effects (e.g., settlement class), and design matrix for the random 

effect variables, respectively. Also, 𝜁𝑖 is spatial random effect which can be further 

decomposed into a spatially varying (𝜉𝑖) and spatially independent (𝜗𝑖) random effects.  

Similarly, the log of the mean density 𝜇𝑖 is modelled as a linear combination of the 

geospatial covariates and random effects as given below: 

                                   𝜇𝑖 = eα+βX+fZ+ξi+𝜗𝑖                                            (7) 

Then the predicted population count  �̂�𝑖 is given by 

                                          �̂�𝑖 = �̂�𝑖�̂�𝑖𝐵𝑖                                                    (8) 

where �̂�𝑖 is the predicted detection probability; �̂�𝑖 is the predicted density; and the 

building count. Thus, equation (1) can be rewritten as 

                                                        𝐶𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑝𝑖𝜇𝑖𝐵𝑖)                                       (9)                    

that is, 𝜆𝑖 = 𝑝𝑖𝜇𝑖𝐵𝑖.  

 

Model fitting  

In this study, we used building count to define population density by dividing the 

observed population count with the corresponding number of buildings. Then robust 

Bayesian hierarchical models were trained and tested separately for each of the 

population density and settlement detection probability. The three top competing 

models are shown below: 
 

Model 1:  y ~ -1+ Intercept + x1 + x2 + x3 + 

  f(eps, model="iid") +  f(s, model=spde) + f(set_typ, model="iid") 
 

Model 2: y ~ -1 + Intercept + x1 + x2 + x3 + f(eps, model="iid") +  f(set_typ, model="iid") 
 

Model 3: y ~ -1 + Intercept + x1 + x2 + x3 + f(eps, model="iid") + f(s, model=spde) 



 

Where y is population density (or the settlement detection variable), x1, x2, and x3 are 

the fixed effect geospatial covariates defined in table 1, f(eps, model="iid") represent 

random effect term for the EAs, f(set_typ, model="iid") is a random effect component 

for settlement type classification using the Global Human Settlement Layer Degree of 

Urbanization classes (GHSL-SMOD) (Schiavina et al. 2023), and f(s, model=spde) 

represent a spatial random effect. 

 

 Thus, the three models are nested with Model 1 serving as the full model.  

 

Model fit checks  

 

Model fit checks and model selection of the three models described above relied 

primarily on a constellation of model fit metrics, including the Mean Absolute Error 

(MAE), the Root Mean Square Error (RMSE), the Deviance Information Criterion (DIC) 

and the Pearson correlation coefficient (CORR). A lower value for the absolute bias, 

MAE and the RMSE and the DIC indicates a better-fit model.  A higher value for the 

Pearson correlation coefficient indicates a better-fit model. Table 2 below provides the 

model-fit metrics across the three models. Based on the model fit checks, model 1 

provided the best fit for both detection and density variables, and the final population 

predictions at the grid cell level were based on this model. Model selections were 

based on Deviance Information Criterion with models with lowest values being 

selected as the best fit. 

 

Table 2. DIC values of the models fitted to each dataset 

Data DIC 

Model 1 Model 2 Model 3 

Detection  4304.48 5012.67 4601.98 

Density 55685.92 57941.14 56206.84 

 

The novelty of the modelling approach utilized here is that it allows for the adjustment 

of potential systematic bias due to imperfect settlement data observations.  

 

All data processing and analysis was carried out using R (v.4.3.2) (R Core Team, 

2023) and INLA (v 22.05.07) (Rue et al. 2009). The concept of bottom-up population 

modelling for estimating population in the absence of recent census data was 

described by Leasure et al. (2020). Approaches similar to the one used here for Haut-

Katanga have been carried out for Papua New Guinea (Nnanatu et al. 2024) and 

Cameroun (Nnanatu et al. 2022). 

 

Model Fit Checks and Model Cross-validation (Adjusted) 

We compare the model performance of the adjusted and unadjusted models based on 

model 1 above which was the best model.  The adjusted population utilises the 



settlement detection probabilities to scale the predicted population, whereas the 

unadjusted population is the predicted population without any adjustment. That is, the 

adjusted population estimates are obtained from �̂�𝑖 = �̂�𝑖�̂�𝑖𝐵𝑖, while the unadjusted 

estimates are from �̂�𝑖 = �̂�𝑖𝐵𝑖 only. The detection probability-adjusted population 

provides better model fits than the unadjusted one (Table 3). 

 

Table 3. Model fit metrics for the adjusted and the adjusted model 

Data MAE RMSE CORR 

Unadjusted (Base) 3092.09 4947.38 0.59 

Adjusted  2719.72 4543.27 0.65 

 

Cross-validation allows us to test the predictive ability of our model by predicting 

values of response variables that were either part of the training samples and withheld 

for prediction (in-sample), or dividing the data into two of 20% test and 80% train sets. 

We used k-fold cross-validation with 9 folds to test the predictive ability of our 

methodology. Each of the 9 folds (subsamples) represents a test set. Thus, the test 

set was never part of the training sample for out-of-sample cross-validation. Results 

on Table 4, show similar values with high Pearson correlation coefficient of at least 

~0.8 (see also Figure 1).  

 

Table 4. Model cross-validation metrics 

Dataset MAE RMSE CC 

In-Sample 269.64 519.92 0.80 

Out-of-Sample  263.33 520.28 0.80 

 

 
Figure 2. Scatter plots of model cross validations for in-sample and out-of-sample test datasets  
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