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Release Statement 
Modelled gridded population estimates for Ituri Province in the Democratic 
Republic of Congo version 4.4. 
22 December 2025 
 
 
Abstract 
This data release provides gridded population estimates (spatial resolution of 3 arc-
seconds, approximately 100-metre grid cells) for Ituri Province in the Democratic Republic 
of Congo (DRC), along with estimates of the number of people belonging to various age-
sex groups. The project team used the Pre-Distribution Registration Survey (PDRS) data 
from the National Malaria Control Programme (PNLP) collected as part of anti-malarial 
campaigns in the DRC for 2023, settlement extents and geospatial covariates to model 
and estimate population numbers at grid cell level using a Bayesian statistical hierarchical 
modelling framework. The approach facilitated simultaneous accounting for the multiple 
levels of variability within the data. It also allowed the quantification of uncertainties in 
parameter estimates. These model-based population estimates can be considered as 
most accurately representing the year 2023. This time period corresponds to the PDRS 
survey date for Ituri. Although the methods were robust enough to explicitly account for 
key random biases within the datasets, it is noted that systematic biases, which may arise 
from sources other than random errors within the observed data collection process, are 
most likely to remain. 
 
These data were produced by the WorldPop Research Group at the University of 
Southampton. This work was part of the GRID3 – Phase 2 Scaling project, with funding 
from the Gates Foundation (INV-044979). Project partners included GRID3 Inc, the 
Center for Integrated Earth System Information (CIESIN) within the Columbia Climate 
School at Columbia University, and WorldPop at the University of Southampton. The final 
statistical modelling was designed, developed, and implemented by Chris Nnanatu. Data 
processing was done by Ortis Yankey with additional support from Heather Chamberlain. 
Project oversight was done by Attila Lazar, Chris Nnanatu and Andy Tatem. The PDRS 
data from the malaria insecticide treated net (ITN) distribution campaigns were collected, 
processed, anonymised and shared by the PNLP and its implementing partners. The 
settlement extent data was prepared and shared by CIESIN (2024). The data has been 
clipped to GRID3-CIESIN health area extent (version 8.0) (CIESIN, 2025). 
 
 



 
 

2 

The authors followed rigorous procedures designed to ensure that the used data, the 
applied method and thus the results are appropriate and of reasonable quality. If users 
encounter apparent errors or misstatements, they should contact WorldPop 
at release@worldpop.org.  
 
WorldPop, University of Southampton, and their sponsors offer these data on a "where 
is, as is" basis; do not offer an express or implied warranty of any kind; do not guarantee 
the quality, applicability, accuracy, reliability or completeness of any data provided; and 
shall not be liable for incidental, consequential, or special damages arising out of the use 
of any data that they offer. These data are operational population estimates and are not 
official government statistics. 
 
RELEASE CONTENT 

1. COD_Ituri_province_population_v4.4_gridded.zip 
2. COD_ Ituri_province_population_v4.4_agesex.zip 

 
LICENSE 
These data may be redistributed following the terms of a Creative Commons Attribution 
4.0 International (CC BY 4.0) license. 
 
SUGGESTED CITATION 
Nnanatu C., Yankey O., Chamberlain H., Lazar A. N., Tatem A. J. 2025. Bottom-up 
gridded population estimates for Ituri Province in the Democratic Republic of Congo 
(2023), version 4.4. WorldPop, University of Southampton. doi: 
https://dx.doi.org/10.5258/SOTON/WP00857  
 
FILE DESCRIPTIONS 
The projection for all GIS files is the geographic coordinate system WGS84 (World 
Geodetic System 1984). Kindly note that while this data represents population counts, 
values contain decimals, i.e. fractions of people. This is because both the input population 
data and age-sex proportions contain decimals. For this reason, it is advised to aggregate 
the rasters at a coarser scale. For example, if four grid cells next to each other have 
values of 0.25 this indicates that there is 1 person somewhere in those four grid cells. 
 
COD_Ituri_province_population_v4_4_gridded.tif 
This geotiff raster contains estimates of total population size for each approximately 100-
metre grid cell (0.0008333 decimal degrees grid) across Ituri Province. The values are 
the mean of the posterior probability distribution for the predicted population size in each 
grid cell. Grid cells within the national boundary with values of NA represent areas that 

mailto:release@worldpop.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.5258/SOTON/WP00857
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were mapped as unsettled according to building footprints data, while any other NA 
values represent areas mapped as being outside national boundary. 
 
COD_ Ituri_province_population_v4_4_lower.tif 
This geotiff raster contains estimates of the lower bound credible interval (2.5% CI) for 
each grid cell across Ituri. The values are the 2.5% posterior probability distribution for 
the predicted population size in each grid cell. The lower bound estimates cannot be 
summed across grid cells to produce a lower credible interval measure for a multi-cell 
area. Grid cells within the national boundary with values of NA represent areas that were 
mapped as unsettled according to building footprints data, while any other NA values 
represent areas mapped as being outside national boundary. 
 
COD_ Ituri_province_population_v4_4_upper.tif 
This geotiff raster contains estimates of the upper bound credible interval (97.5% CI) for 
each grid cell across Ituri. The values are the 97.5% posterior probability distribution for 
the predicted population size in each grid cell. The upper bound estimates cannot be 
summed across grid cells to produce an upper bound credible interval measure for a 
multi-cell area. Grid cells within the national boundary with values of NA represent areas 
that were mapped as unsettled according to building footprints data, while any other NA 
values represent areas mapped as being outside national boundary. 
 
COD_ Ituri_province_population_v4_4_agesex.zip 
This zip file contains 40 geotiff rasters at a spatial resolution of 3 arc-seconds 
(approximately 100-metre grid cells). Each raster provides gridded population estimates 
for an age-sex group per grid cell across Ituri. We provide 36 rasters for the commonly 
reported age-sex groupings of sequential age classes for males and females separately. 
These are labelled with either an “m”(male) or an “f” (female) followed by the number of 
the first year of the age class represented by the data. “f0” and “m0” are population counts 
of under 1-year olds for females and males, respectively. “f1” and “m1” are population 
counts of 1 to 4 year olds for females and males, respectively. Over 4 years old, the age 
groups are in five year bins labelled with a “5”, “10”, etc. Eighty-year-olds and older are 
represented by the groups “f80” and “m80”. We provide four additional rasters that 
represent demographic groups often targeted by programmes and interventions. These 
are “under1” (all females and males under the age of 1), “under5” (all females and males 
under the age of 5), “under15” (all females and males under the age of 15) and “f15_49” 
(all females between the ages of 15 and 49, inclusive). These data were produced using 
age-sex proportions from the 2024 WorldPop Global subnational population pyramids for 
the DRC. The age-sex proportions are available per a given province. Hence we applied 
the age-sex proportions for Ituri to the gridded population estimates (COD_ Ituri_Province 
_population_v4_4_gridded.tif) to allocate the population to the different age-sex classes. 
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RELEASE HISTORY 
 
Version 4.4 (22 December 2025) 

• This is a minor update for Ituri province data [doi: 10.5258/SOTON/WP00857]. The 
data was produced by clipping the data to GRID3-CIESIN health area extent 
(version 8.0) (CIESIN, 2025). Otherwise, the estimated total population and the 
model design and methodology have not changed since version 4.3 

• This data is released as part of a collection of population estimates for all 26 DRC 
provinces: https://wopr.worldpop.org/?COD/Population/v4.4  

 
Version 4.3 (29 August 2025) 

• This is a major update for Ituri Province [doi: 10.5258/SOTON/WP00818] (as 
described in this release statement).  

• This data release utilizes operational National Malaria Control Programme data, 
composite openly accessible building footprint datasets and a new mastergrid.  

• This data is released as part of a collection of population estimates for 17 DRC 
provinces: https://wopr.worldpop.org/?COD/Population/v4.3  
 

Version 3.0 (4 January 2022) [doi:10.5258/SOTON/WP00720]  
• Original release of the population dataset for the Haut-Katanga, Haut-Lomami, 

Ituri, Kasaï, Kasaï Oriental, Lomami and Sud-Kivu provinces. 
 
 
ASSUMPTIONS AND LIMITATIONS  
 
These population estimates most likely represent the year 2023, but because of the 
different ages of the input data used to build the model, a more precise time point cannot 
be assigned. The PDRS data that was used as the response variable was collected in 
2023, while geospatial covariates data were collected from different time periods between 
2020 and 2023. Similarly, the CIESIN settlement layers were produced in 2024. The 
inherent heterogeneity in the temporal alignment of these datasets used in the modelling 
may introduce uncertainties and potential inaccuracies in the modelling process. 
 
Data on population per household (household size), collected during ITN distribution 
campaigns, was aggregated to calculate total population count for a given spatial unit. 
Given that the number of ITNs received by a household is proportional to the household 
size, there is an incentive for respondents to potentially inflate counts of population per 
household. The presence of inflated household sizes in the input population data would 
likely introduce systematic biases in the modelled estimates. 

https://wopr.worldpop.org/?COD/Population/v4.4
https://wopr.worldpop.org/?COD/Population/v4.2


 
 

5 

 
The model does not account for external factors such as migration, displacement, or 
sudden demographic changes, which could significantly influence population dynamics. 
 
Grid cell alignment is based on a mastergrid. Note that this version's (v4.4) mastergrid 
aligns with versions 4.1, 4.2 and 4.3 but does not align with previous DRC gridded 
population layers, namely versions v1.0, v2.0, v3.0. We updated the mastergrid in 2024 
to ensure grid cell alignment across all new WorldPop data products. 
 
 
SOURCE DATA 
The key datasets used to produce the modelled population estimates are: 
  
PDRS Data 
The input population dataset used for the population modelling for Ituri Province was the 
PDRS malaria bednet campaign data. The PDRS dataset, which was collected in 2023, 
provided detailed information on a given household for which a bednet was issued, such 
as the household size, the number of bednets issued, the number of children in the 
household, the number of males, and the number of females, among others.  
Although the malaria bednet campaign was designed to distribute bednet to every 
household within the province, a preliminary exploratory data analysis carried out on the 
PDRS data indicated that some households were not visited during the campaign, while 
others were not completely covered.  
The GPS points of all households within the province were provided in the PDRS data. 
We implemented population modelling for small spatial units, utilising unofficial 
boundaries similar to census Enumeration Areas ("pre-EAs"; Qader et al., 2024). The 
household-level data on population counts was spatially aggregated to these spatial units, 
by summing the household size data for all GPS points within each pre-EA boundary.  
 
Settlement Data 
Settlement data was provided by CIESIN in the form of raster files (CIESIN, 2024). We 
obtained two different settlement products, namely (i) settlement area, which indicates 
the area of all buildings whose centroid falls within a given cell, and (ii) building count, 
which is the number of building centroids within a given cell. Each of these settlement 
layers was used in separate analyses together with the observed population count and 
ancillary geospatial data in robust statistical modelling. After using each settlement layer 
in the analysis, we compared model metrics and the gridded population layer from both 
layers. Settlement building count provided more realistic population numbers at the 
gridcell level and hence was retained for the final population predictions. 
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Geospatial Covariates 
A wide variety of geospatial covariates, which are related to population distribution, were 
considered in the modelling. These geospatial covariates include land use and land cover 
data, climate variables such as temperature and rainfall, physical features and 
infrastructure such as roads and schools, and conflict data. Population model covariates 
were selected using a generalized linear model (GLM) based stepwise selection method. 
The selected covariates were further assessed for multi-collinearity and statistical 
significance. Eventually, of the 80 geospatial covariates initially tested, 9 were retained 
as the best fit covariates with variance inflation factor (VIF) of less than 5. The descriptions 
of these final geospatial covariates are presented in Table 1 below. 
 
 
Table 1. Selected geospatial covariates for the modelling. 
Description Source Link/Reference 
Euclidean distance to herbaceous and 
grassland landcover type, 2020 
 

WorldPop Woods et al (2024) 

Euclidean distance to trees landcover 
type, 2020 

WorldPop Woods et al (2024) 

Euclidean distance to urban areas 2020 WorldPop Woods et al (2024) 
Euclidean distance to bare areas 2020 WorldPop Woods et al (2024) 
Mean – temperature, 2022 Copernicus https://land.copernicus.eu/

global/products/ba 
Mean – Dry matter productivity, 2022 Copernicus https://land.copernicus.eu/

global/products/ba 
Standard deviation – Dry matter 
productivity, 2022 

Copernicus https://land.copernicus.eu/
global/products/ba 

Euclidean distance to ACLED conflict 
locations 2022 

ACLED 
 

https://acleddata.com/ 

Euclidean distance to OSM educational 
facilities 2023 
 

OSM https://www.openstreetma
p.org 

 
 
Age-Sex Proportions 
We used the 2024 WorldPop Global subnational population pyramids (Bondarenko et al 
2025) to calculate the age-sex proportions for Ituri. We multiplied our gridded population 
estimates (COD_ Ituri_province_population_v4_4_gridded.tif) by the age-sex 
proportions(grouping) to produce COD_ Ituri _province_population_v4.4_agesex.zip. 
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METHODS OVERVIEW 
The key steps of our approach were as follows: 
 

• Cleaning household dataset from the PDRS by removing extreme outliers from 
the data.  

• Summarizing the household sizes from the PDRS dataset to get the total 
population at the pre- enumeration area (pre-EA) level (Qader at al. 2024).  

• Geospatial covariates were subjected to robust covariate selection for model 
training and parameter estimation. 

• We developed a hierarchical Bayesian statistical model using the INLA-SPDE 
approach (Lindgren et al. 2011) to fit and predict the population count. 

• Population estimates were predicted at grid cell level using the grid cell values of 
the covariates selected at the model training level. 
 

Statistical Modelling 
All data processing, statistical modelling, and analyses were carried out using R version 
4.4.2 (R Core Team, 2023), tidyverse (v. 2.0.0) (Wickham et al., 2019), SF (v. 1.0-17) 
(Pebesma and Bivand, 2023), and Terra (v. 1.7–78) (Hijmans et al., 2024). Bayesian 
hierarchical modelling was implemented using the R-INLA package version 24.12.11 
(Rue et al. 2009).   Modelled estimates of the population were produced using a bottom-
up population modelling framework (Wardop et al., 2018), which utilises a Bayesian 
statistical inference framework that can be implemented using either a Markov chain 
Monte Carlo (MCMC)-based strategy (Leasure et al., 2020; Boo et al. 2022; Darin et al., 
2022) or the integrated nested Laplace approximation in conjunction with the stochastic 
partial differential equation (INLA-SPDE; Rue et al., 2009; Lindgren et al., 2011) 
techniques recently developed by Nnanatu et al. (2022) in the context of Cameroon 
(Nnanatu et al., 2022; Nnanatu et al., 2025a), and applied in Papua New Guinea 
(Nnanatu et al., 2024) and the Democratic Republic of Congo (e.g., Nnanatu et al., 
2025b).  
 
Data cleaning 

The data cleaning consisted of two steps: 

The CIESIN building count and the total observed PDRS population were summed-up for 
all model training units (i.e. EAs), and then the observed population density was 
calculated (i.e. people per building). Those EAs are dropped, where this observed 
population density was less than 1 or greater than 20. After the first step, 88 percent of 
EAs were retained.  

In the second step, the observed total PDRS population was compared to the WorldPop 
global (WPGL) 2024 total population per EA. This ensured that the observations are not 
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too large or small compared to a census projection-based population estimates. In this 
step, only those remaining EAs were kept, where the WPGL:PDRS ratio was greater or 
equal to 0.2   AND   less or equal than 10. In another word, the WPGL sum can be 
maximum 10 times larger than PDRS (i.e. PDRS should not be too small, missing 
significant population)   AND   the PDRS cannot be more than 5 times larger than the 
WPGL estimates (i.e. the PDRS cannot be unrealistically too large).  

After the two cleaning steps, approximately 84 percent of the EAs remained for model 
training.  

 
Model Specification 
In general, the population count 𝑁! at a given (ideally geolocated) area unit is assumed 
to be Poisson-distributed, such that 𝑁! ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!). However, in the context of small 
area population modelling (Leasure et al., 2020; Boo et al. 2022 ; Darin et al.,2022; 
Nnanatu et al., 2022; Nnanatu et al., 2024a; Nnanatu et al., 2024b; Nnanatu et al., 
2025), a key assumption of the Poisson model which requires both mean and variance 
to be equal is often violated due to overdispersion in which case 𝑚𝑒𝑎𝑛(𝑁!) ≠ 𝑣𝑎𝑟(𝑁!). 
For this reason, the mean parameter 𝜆! is usually expressed in terms of population 
density to account for spatial aggregation error (e.g., Leasure et al 2020, Nnanatu et al 
2022). Typically, the mean parameter is given as  𝜆! = 𝜇!𝐵!, where 𝐵! is the total 
number of buildings within a pre- enumeration area (pre-EA) 𝑖 and 

																									𝐷! =
𝑝𝑜𝑝!
𝐵!

																																											(1) 

is the population density defined as the number of people per building which follows a 
Gamma distribution given by  

																						𝐷! ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼", 𝛼#)																											(2) 
where 𝛼" and 𝛼# are the shape and rate parameters with mean  𝜇! = 𝛼"/𝛼# and 
variance 𝜙 = 𝛼"/𝛼##, respectively. The predicted population density  𝐷>! for pre-EA 𝑖 is 
given by  

																									𝐷>! 	= expB𝑋!𝑻𝜷 + 𝑍!%𝜸 + 𝜉(𝑠!) + 𝜁!J											(3)											 
 
where 𝑋 and 𝑍 are the design matrices of fixed effect covariates (e.g., average annual 
precipitation, average annual temperature, distance to crop land) and random effects 
(e.g., settlement type), respectively. Also, the terms 𝜷 ∈ ℝ('×") and 𝜸 are the vectors of 
fixed effects regression parameters and random effects variances, respectively. While 
the terms 𝜉(𝑠!) and  𝜁! are the spatially varying and spatially independent random 
effects accounting for spatial autocorrelations and dissimilarities between observations, 
respectively. We have that the term 𝜉(𝑠!) is a Gaussian Random Field (GRF) such that  

																														𝜉(𝑠!) ∼ 𝐺𝑅𝐹(𝟎, Σ)																										(4) 
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where Σ is a dense covariance matrix. The INLA-SPDE approach allows us to 
approximate the GRF using a computationally efficient Gaussian Markov Random Field 
(GMRF) by discretising the continuous spatial domain using mesh (Lindgren et al., 
2011). The random term 𝜁! is assumed to follow a zero-mean Gaussian distribution 
specified by 

																														𝜁! ∼ 𝑁𝑜𝑟𝑚𝑎𝑙B0, 𝜎*#J																						(5) 
where 𝜎*# > 0 is a variance parameter. Then, finally, the predicted population counts at 
grid cell 𝑔 is obtained as  

																																𝑁>+ = 𝐷>+ × 𝐵+																														(6) 
where 𝐷>+ is the predicted population density in grid cell 𝑔 using the corresponding grid 
cell covariate values and the model parameter values based on equation (3); 𝐵+ is the 
corresponding building count for grid cell 𝑔	(𝑔 = 1,… , 𝐺). The prediction covariates 
included 𝐺	grid cells at 100m-by-100m resolution, and population counts were predicted 
in each grid cell that contains values of building counts.  
 
All models were implemented within the integrated nested Laplace approximation 
(INLA; Rue et al, 2009) in conjunction with the stochastic partial differential equation 
(SPDE Lindgren et al, 2011) frameworks. It allowed us to gain more computational 
advantage by discretizing the entire study location continuous space into a Gaussian 
Markov random fields (GMRF) process. To ensure flexibility and better capture local 
variabilities within the data, we used the Penalized Complexity (PC) (Simpson et al., 
2017) on the standard deviation parameters throughout, such that a small probability of 
0.01 is assigned to the standard deviation 𝜎 being greater than 1, that is, 𝑃(𝜎 > 1) =
0.01.   
 
Model fit checks and model validation 
Model selection relied on the deviance information criterion (DIC) values while the 
selected model predictive ability was examined using the mean absolute error (MAE), 
the root mean square error (RMSE) and the correlation coefficient (CC). Smaller values 
of DIC, MAE and RMSE indicate better fit and predictive ability while larger values of 
CC indicate better predictive ability.  
These model performance metrics were also used within k-fold cross-validation where 
the data was first divided into two with the model parameters trained with 80% of the 
data while the remaining 20% was used as a test to predict population density. This was 
repeated 10 times (10-fold) whilst ensuring that none of the test samples was repeated 
(that is, the test sets are mutually exclusive and exhaustive). The primary aim of the 
cross-validation is to test how well the best fit model parameters were able to predict 
population outside the observed locations.  To more accurately capture the performance 
of the model, we carried out in-sample and out-of-sample cross validations. In the in-
sample cross-validation, all the data points were used in the training set but 20% of the 
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data points were used as test set to predict their population density. Whereas in the out-
of-sample cross validation, the 20% test set was excluded completely from the 80% 
training set.  
 
Further posterior inference and grid cell predictions were also carried out. The 
prediction at the grid cell uses the model parameters of the best fit training set model to 
predict population counts at 100m-by-100m grid cells across the study location using 
the corresponding grid cell values of the geospatial covariates and the building counts.  
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