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Release Statement 
Modelled gridded population estimates for Kinshasa Province in the Democratic 
Republic of Congo version 4.4. 
22 December 2025 
 
 
Abstract 
This data release provides gridded population estimates (spatial resolution of 3 arc-
seconds, approximately 100-metre grid cells) for Kinshasa Province in the Democratic 
Republic of Congo (DRC). The project team used the Pre-Distribution Registration Survey 
(PDRS) data from the National Malaria Control Programme (PNLP) collected as part of 
anti-malarial campaigns in the DRC between the periods 2021 to 2023, settlement extents 
and geospatial covariates to model and estimate population numbers at grid cell level 
using a Bayesian statistical hierarchical modelling framework. The approach facilitated 
simultaneous accounting for the multiple levels of variability within the data. It also allowed 
the quantification of uncertainties in parameter estimates. These model-based population 
estimates can be considered as most accurately representing the year 2023. Although 
the methods were robust enough to explicitly account for key random biases within the 
datasets, it is noted that systematic biases, which may arise from sources other than 
random errors within the observed data collection process, are most likely to remain. 
 
These data were produced by the WorldPop Research Group at the University of 
Southampton. This work was part of the GRID3 – Phase 2 Scaling project, with funding 
from the Gates Foundation (INV-044979). Project partners included GRID3 Inc, the 
Center for Integrated Earth System Information (CIESIN) within the Columbia Climate 
School at Columbia University, and WorldPop at the University of Southampton. The final 
statistical modelling was designed, developed, and implemented by Chris Nnanatu. Data 
processing was done by Ortis Yankey with additional support from Heather Chamberlain, 
Assane Gadiaga and Krishnaveni KS. Project oversight was done by Attila Lazar, Chris 
Nnanatu and Andy Tatem. The PDRS data from the malaria insecticide treated net (ITN) 
distribution campaigns were collected, processed, anonymised and shared by the PNLP 
and its implementing partners. The settlement extent data was prepared and shared by 
CIESIN (2024). The data has been clipped to GRID3-CIESIN health area extent (version 
8.0) (CIESIN, 2025). 
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The authors followed rigorous procedures designed to ensure that the used data, the 
applied method and thus the results are appropriate and of reasonable quality. If users 
encounter apparent errors or misstatements, they should contact WorldPop 
at release@worldpop.org.  
 
WorldPop, University of Southampton, and their sponsors offer these data on a "where 
is, as is" basis; do not offer an express or implied warranty of any kind; do not guarantee 
the quality, applicability, accuracy, reliability or completeness of any data provided; and 
shall not be liable for incidental, consequential, or special damages arising out of the use 
of any data that they offer. These data are operational population estimates and are not 
official government statistics. 
 
RELEASE CONTENT 

1. COD_Kinshasa_province_population_v4.4_gridded.zip 
2. COD_Kinshasa_province_population_v4.4_agesex.zip 

 
LICENSE 
These data may be redistributed following the terms of a Creative Commons Attribution 
4.0 International (CC BY 4.0) license. 
 
SUGGESTED CITATION 
Nnanatu C., Yankey O., Chamberlain H., Krishnaveni K S, Lazar A. N., Tatem A. J. 2025. 
Bottom-up gridded population estimates for Kinshasa Province in the Democratic 
Republic of Congo (2023), version 4.4. WorldPop, University of Southampton. doi: 
https://dx.doi.org/10.5258/SOTON/WP00861  
 
FILE DESCRIPTIONS 
The projection for all GIS files is the geographic coordinate system WGS84 (World 
Geodetic System 1984). Kindly note that while this data represents population counts for 
each settled pixels, values contain decimals, i.e. fractions of people. This is because both 
the input population data and age-sex proportions contain decimals. For this reason, it is 
advised to aggregate the rasters at a coarser scale. For example, if four grid cells next to 
each other have values of 0.25 this indicates that there is 1 person somewhere in those 
four grid cells. Grid cells within the national boundary with values of NA represent areas 
that were mapped as unsettled according to building footprints data, while any other NA 
values represent areas mapped as being outside national boundary. 
 
COD_Kinshasa_province_population_v4_4_gridded.tif 
This geotiff raster contains estimates of total population size for each approximately 100-
metre grid cell (0.0008333 decimal degrees grid) across Kinshasa. The values are the 

mailto:release@worldpop.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.5258/SOTON/WP00861
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mean of the posterior probability distribution for the predicted population size in each grid 
cell.  
 
COD_Kinshasa_province_population_v4_4_lower.tif 
This geotiff raster contains estimates of the lower bound credible interval (2.5% CI) for 
each grid cell across the Kinshasa. The values are the 2.5% posterior probability 
distribution for the predicted population size in each grid cell. The lower bound estimates 
cannot be summed across grid cells to produce a lower credible interval measure for a 
multi-cell area.  
 
COD_Kinshasa_province_population_v4_4_upper.tif 
This geotiff raster contains estimates of the upper bound credible interval (97.5% CI) for 
each grid cell across Kinshasa. The values are the 97.5% posterior probability distribution 
for the predicted population size in each grid cell. The upper bound estimates cannot be 
summed across grid cells to produce an upper bound credible interval measure for a 
multi-cell area.  
 
COD_Kinshasa_province_population_v4_4_agesex.zip 
This zip file contains 40 geotiff rasters at a spatial resolution of 3 arc-seconds 
(approximately 100-metre grid cells). Each raster provides gridded population estimates 
for an age-sex group per grid cell across Kinshasa. We provide 36 rasters for the 
commonly reported age-sex groupings of sequential age classes for males and females 
separately. These are labelled with either an “m”(male) or an “f” (female) followed by the 
number of the first year of the age class represented by the data. “f0” and “m0” are 
population counts of under 1-year olds for females and males, respectively. “f1” and “m1” 
are population counts of 1 to 4 year olds for females and males, respectively. Over 4 
years old, the age groups are in five year bins labelled with a “5”, “10”, etc. Eighty year 
olds and over are represented by the groups “f80” and “m80”. We provide four additional 
rasters that represent demographic groups often targeted by programmes and 
interventions. These are “under1” (all females and males under the age of 1), “under5” 
(all females and males under the age of 5), “under15” (all females and males under the 
age of 15) and “f15_49” (all females between the ages of 15 and 49, inclusive). These 
data were produced using age-sex proportions from the 2024 WorldPop Global 
subnational population pyramids for the DRC. The age-sex proportions are available per 
a given province. The age-sex proportions were applied to the gridded population 
estimates (COD_Kinshasa_province_population_v4_4_gridded.tif) to allocate the 
population to the different age-sex classes. While this data represents population counts, 
values contain decimals, i.e. fractions of people. This is because both the input population 
data and age-sex proportions contain decimals. For this reason, it is advised to aggregate 
the rasters at a coarser scale. For example, if four grid cells next to each other have 
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values of 0.25 this indicates that there is 1 person of that age group somewhere in those 
four grid cells. 
 
RELEASE HISTORY 
 
Version 4.4 (22 December 2025) 

• This is the original release of population for Kinshasa Province 
in the DRC [doi: 10.5258/SOTON/WP00861] (as described in this release 
statement).  

• This data is released as part of a collection of population estimates for all 26 DRC 
provinces: https://wopr.worldpop.org/?COD/Population/v4.4  
 

 
 
ASSUMPTIONS AND LIMITATIONS  
 
These population estimates most likely represent the year 2023, but because of the 
different ages of the input data used to build the model, a more precise time point cannot 
be assigned. The PDRS data that was used as the response variable was collected 
between 2001 and 2003, while geospatial covariates data were collected from different 
time periods between 2020 and 2023. Similarly, the CIESIN settlement layers were 
produced in 2024. The inherent heterogeneity in the temporal alignment of these datasets 
used in the modelling may introduce uncertainties and potential inaccuracies in the 
modelling process. 
 
Data on population per household (household size), collected during ITN distribution 
campaigns, was aggregated to calculate total population count for a given spatial unit. 
Given that the number of ITNs received by a household is proportional to the household 
size, there is an incentive for respondents to potentially inflate counts of population per 
household. The presence of inflated household sizes in the input population data would 
likely introduce systematic biases in the modelled estimates. 
 
The model does not account for external factors such as migration, displacement, or 
sudden demographic changes, which could significantly influence population dynamics. 
 
Grid cell alignment is based on a mastergrid. Note that this version's (v4.4) mastergrid 
aligns with versions 4.1, 4.2 and 4.3 but does not align with previous DRC gridded 
population layers, namely versions v1.0, v2.0, v3.0. We updated the mastergrid in 2024 
to ensure grid cell alignment across all new WorldPop data products. 
 

https://wopr.worldpop.org/?COD/Population/v4.4
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SOURCE DATA 
The key datasets used to produce the modelled population estimates are: 
  
PDRS Data 
The input population dataset used for the Democratic Republic of Congo (DRC) 
population modelling was derived from the PDRS malaria bednet campaign data, 
collected between 2021 and 2023 across the country’s provinces. The PDRS dataset 
included GPS coordinates of all households within each province. For the modelling, we 
constructed small-area spatial units by aggregating 100 m grid cells into larger blocks 
considering the building density differences across the DRC. In urban areas, the minimum 
aggregation was 4 × 4 cells, while in rural areas, where building density was lower, larger 
aggregations were applied to ensure meaningful population estimates. 
 
Settlement Data 
We used the The GRID3 COD - Settlement Extents v3.1 (CIESIN, 2024) as the input 
settlement layer for the population modelling. We used the spatial point shapefile 
depicting the centroids of settled grid cells at 3-arc seconds (or ~100 meters). This data 
contained the building count and the building area. We converted the building count per 
point by rasterizing it to WorldPop mastergrid. The building count raster was then used in 
population modelling.  
 
Geospatial Covariates 
A wide variety of geospatial covariates, which are related to population distribution, were 
considered in the modelling. These geospatial covariates include land use and land cover 
data, climate variables such as temperature and rainfall, physical features and 
infrastructure such as roads and schools, and conflict data. Population model covariates 
were selected using a generalized linear model (GLM) based stepwise selection method. 
The selected covariates were further assessed for multi-collinearity and statistical 
significance. Eventually, of the 85 geospatial covariates initially tested, 21 were retained 
as the best fit covariates with variance inflation factor (VIF) of less than 5. The descriptions 
of these final geospatial covariates are presented in Table 1 below. 
 
 
Table 1. Selected geospatial covariates for modelling. 
Description Source Link/Reference 
Coefficient of variation building area (3 X 
3 moving window) 

WorldPop Woods et al (2024) 

Coefficient of variation building area (9 X 
9 moving window) 

WorldPop Woods et al (2024) 
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Coefficient of variation building count (9 
X 9 moving window) 

WorldPop Woods et al (2024) 

Euclidean distance to cropland natural 
vegetation 2020 

WorldPop Woods et al (2024) 

Euclidean distance to sparse vegetation 
2020 

WorldPop Woods et al (2024) 

Euclidean distance to Tree/Herbaceous 
cover 2020 

WorldPop Woods et al (2024) 

Euclidean distance to Urban areas 2020 WorldPop Woods et al (2024) 
Euclidean distance to bare areas 2020 WorldPop Woods et al (2024) 
GHS Built Surface Non-Residential GHS https://human-

settlement.emergency.cop
ernicus.eu/download.php 

GHS Building volume GHS https://human-
settlement.emergency.cop
ernicus.eu/download.php 

Dry matter productivity 2022 Copernicus https://land.copernicus.eu/
global/products/ba 

Precipitation 2022 Copernicus https://land.copernicus.eu/
global/products/ba 

Euclidean distance to ACLED Strategic 
development locations 2022 

ACLED 
 

https://acleddata.com/ 

Euclidean distance to OSM education 
facilities 2023 

OSM https://www.openstreetma
p.org 

Euclidean distance to OSM place of 
worship 2023 

OSM https://www.openstreetma
p.org 

GHS – residential layer 2020 GHS https://human-
settlement.emergency.cop
ernicus.eu/download.php 

NDVI values 2021 Copernicus  https://land.copernicus.eu/
global/products/ba 

Slope SRTM https://www.viewfinderpan
oramas.org/dem3.html 

Nighttime light Earth 
Observation 
Group 

https://eogdata.mines.edu/
products/vnl/ 

Euclidean distance to GRID3 health 
facilities 

GRID3 https://data.grid3.org/sear
ch?tags=COD 

Euclidean distance to Grid3 all roads GRID3 https://data.grid3.org/sear
ch?tags=COD 
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Age-Sex Proportions 
We used the 2024 WorldPop Global subnational population pyramids (Bondarenko et al 
2025) to calculate the age-sex proportions for Bas-Uele. We multiplied our gridded 
population estimates (COD_Kinshasa_province_population_v4_4_gridded.tif) by the 
gridded age-sex proportions to produce 
COD_Kinshasa_province_population_v4.4_agesex.zip. 
 
 
 
METHODS OVERVIEW 
The key steps of our approach were as follows: 
 

• Cleaning household dataset from the PDRS by removing extreme outliers from 
the data.  

• Summarizing the household sizes from the PDRS dataset to get the total 
population at the modelling unit 

• Geospatial covariates were subjected to robust covariate selection for model 
training and parameter estimation. 

• We developed a hierarchical Bayesian statistical model using the INLA-SPDE 
approach (Lindgren et al. 2011) to fit and predict the population count. 

• Population estimates were predicted at grid cell level using the grid cell values of 
the covariates selected at the model training level. 

 
Data cleaning 

The data cleaning process followed a series of steps to ensure that our population data 
was reliable and consistent: 

• We used microcensus data collected in selected provinces of the DRC in 2018 and 
2021 as a benchmark for cleaning the PDRS dataset. These provinces included 
Kinshasa, Kongo-Central, Kwango, Kwilu, Mai-Ndombe, Haut-Katanga, Haut-
Lomami, Ituri, Kasai, Kasai-Oriental, Lomami, and Sud-Kivu. 

• For each province with microcensus data, and for each modelling unit within the 
province, we calculated the mean population density (i.e. people per building) by 
dividing the observed total (microcensus) population with the number of buildings 
extracted from the CIESIN dataset. We then summarized these densities for each 
province, identifying key statistics such as the maximum observed density within 
the province. 
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• We repeated the same process using the PDRS data by calculating the mean 
population density (i.e. people per building) for each modelling unit from the total 
observed population and the extracted (CIESIN) building counts.  

• To find and address the likely extreme values, we removed any modelling units, 
where the mean PDRS population density value was higher than the maximum 
population density observed in the microcensus for that province. For provinces 
without microcensus data, we applied a global threshold of 29.98 people per 
building, that was calculated as the maximum population density of all the 
microcensus observations. 

• Furthermore, we removed modelling units with no CIESIN building count and also 
those without observed PDRS population. 

After implementing the above data cleaning steps, 4% of the modelling unit were dropped 
from the data. This process helped us ensure that observed spatial demographic 
characteristics were considered, and thus the dataset was free from unrealistic high 
values and suitable for use in the modelling work that followed. 

 

Statistical Modelling 
All data processing, statistical modelling, and analyses were carried out using R version 
4.4.2 (R Core Team, 2023), tidyverse (v. 2.0.0) (Wickham et al., 2019), SF (v. 1.0-17) 
(Pebesma and Bivand, 2023), and Terra (v. 1.7–78) (Hijmans et al., 2024). Bayesian 
hierarchical modelling was implemented using the R-INLA package version 24.12.11 
(Rue et al. 2009).   Modelled estimates of the population were produced using a bottom-
up population modelling framework (Wardop et al., 2018), which utilises a Bayesian 
statistical inference framework that can be implemented using either a Markov chain 
Monte Carlo (MCMC)-based strategy (Leasure et al., 2020; Boo et al. 2022; Darin et al., 
2022) or the integrated nested Laplace approximation in conjunction with the stochastic 
partial differential equation (INLA-SPDE; Rue et al., 2009; Lindgren et al., 2011) 
techniques recently developed by Nnanatu et al. (2022) in the context of Cameroon 
(Nnanatu et al., 2022; Nnanatu et al., 2025a), and applied in Papua New Guinea 
(Nnanatu et al., 2024) and the Democratic Republic of Congo (e.g., Nnanatu et al., 
2025b).  
 
Model Specification 
In general, the population count 𝑁! at a given (ideally geolocated) area unit is assumed 
to be Poisson-distributed, such that 𝑁! ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!). However, in the context of small 
area population modelling (Leasure et al., 2020; Boo et al. 2022 ; Darin et al.,2022; 
Nnanatu et al., 2022; Nnanatu et al., 2024a; Nnanatu et al., 2024b; Nnanatu et al., 
2025), a key assumption of the Poisson model which requires both mean and variance 
to be equal is often violated due to overdispersion in which case 𝑚𝑒𝑎𝑛(𝑁!) ≠ 𝑣𝑎𝑟(𝑁!). 
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For this reason, the mean parameter 𝜆! is usually expressed in terms of population 
density to account for spatial aggregation error (e.g., Leasure et al 2020, Nnanatu et al 
2022). Typically, the mean parameter is given as  𝜆! = 𝜇!𝐵!, where 𝐵! is the total 
number of buildings within a pre- enumeration area (pre-EA) 𝑖 and 

																									𝐷! =
𝑝𝑜𝑝!
𝐵!

																																											(1) 

is the population density defined as the number of people per building which follows a 
Gamma distribution given by  

																						𝐷! ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼", 𝛼#)																											(2) 
where 𝛼" and 𝛼# are the shape and rate parameters with mean  𝜇! = 𝛼"/𝛼# and 
variance 𝜙 = 𝛼"/𝛼##, respectively. The predicted population density  𝐷>! for pre-EA 𝑖 is 
given by  

																									𝐷>! 	= expB𝑋!𝑻𝜷 + 𝑍!%𝜸 + 𝜉(𝑠!) + 𝜁!J											(3)											 
 
where 𝑋 and 𝑍 are the design matrices of fixed effect covariates (e.g., average annual 
precipitation, average annual temperature, distance to crop land) and random effects 
(e.g., settlement type), respectively. Also, the terms 𝜷 ∈ ℝ('×") and 𝜸 are the vectors of 
fixed effects regression parameters and random effects variances, respectively. While 
the terms 𝜉(𝑠!) and  𝜁! are the spatially varying and spatially independent random 
effects accounting for spatial autocorrelations and dissimilarities between observations, 
respectively. We have that the term 𝜉(𝑠!) is a Gaussian Random Field (GRF) such that  

																														𝜉(𝑠!) ∼ 𝐺𝑅𝐹(𝟎, Σ)																										(4) 
where Σ is a dense covariance matrix. The INLA-SPDE approach allows us to 
approximate the GRF using a computationally efficient Gaussian Markov Random Field 
(GMRF) by discretising the continuous spatial domain using mesh (Lindgren et al., 
2011). The random term 𝜁! is assumed to follow a zero-mean Gaussian distribution 
specified by 

																														𝜁! ∼ 𝑁𝑜𝑟𝑚𝑎𝑙B0, 𝜎*#J																						(5) 
where 𝜎*# > 0 is a variance parameter. Then, finally, the predicted population counts at 
grid cell 𝑔 is obtained as  

																																𝑁>+ = 𝐷>+ × 𝐵+																														(6) 
where 𝐷>+ is the predicted population density in grid cell 𝑔 using the corresponding grid 
cell covariate values and the model parameter values based on equation (3); 𝐵+ is the 
corresponding building count for grid cell 𝑔	(𝑔 = 1,… , 𝐺). The prediction covariates 
included 𝐺	grid cells at 100m-by-100m resolution, and population counts were predicted 
in each grid cell that contains values of building counts.  
 
All models were implemented within the integrated nested Laplace approximation 
(INLA; Rue et al, 2009) in conjunction with the stochastic partial differential equation 
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(SPDE Lindgren et al, 2011) frameworks. It allowed us to gain more computational 
advantage by discretizing the entire study location continuous space into a Gaussian 
Markov random fields (GMRF) process. To ensure flexibility and better capture local 
variabilities within the data, we used the Penalized Complexity (PC) (Simpson et al., 
2017) on the standard deviation parameters throughout, such that a small probability of 
0.01 is assigned to the standard deviation 𝜎 being greater than 1, that is, 𝑃(𝜎 > 1) =
0.01.   
 
Model fit checks  
Model fit checks was conducted using the Bias, mean absolute error (MAE), the root 
mean square error (RMSE) and the correlation coefficient (CC). Smaller values of for 
the Bias, MAE and RMSE indicate better fit and predictive ability while larger values of 
CC indicate better predictive ability.  Table 2 below shows the model fit metrics 
 
Table 2. Goodness of fit results 
Bias 1.57 
MAE 163.99 
RMSE 286.92 
CC 0.66 

 
Further posterior inference and grid cell predictions were also carried out. The 
prediction at the grid cell uses the model parameters of the best fit training set model to 
predict population counts at 100m-by-100m grid cells across the study location using 
the corresponding grid cell values of the geospatial covariates and the building counts.  
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