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Abstract

This data release provides gridded population estimates (spatial resolution of 3 arc-
seconds, approximately 100-metre grid cells) for Kinshasa Province in the Democratic
Republic of Congo (DRC). The project team used the Pre-Distribution Registration Survey
(PDRS) data from the National Malaria Control Programme (PNLP) collected as part of
anti-malarial campaigns in the DRC between the periods 2021 to 2023, settlement extents
and geospatial covariates to model and estimate population numbers at grid cell level
using a Bayesian statistical hierarchical modelling framework. The approach facilitated
simultaneous accounting for the multiple levels of variability within the data. It also allowed
the quantification of uncertainties in parameter estimates. These model-based population
estimates can be considered as most accurately representing the year 2023. Although
the methods were robust enough to explicitly account for key random biases within the
datasets, it is noted that systematic biases, which may arise from sources other than
random errors within the observed data collection process, are most likely to remain.

These data were produced by the WorldPop Research Group at the University of
Southampton. This work was part of the GRID3 — Phase 2 Scaling project, with funding
from the Gates Foundation (INV-044979). Project partners included GRID3 Inc, the
Center for Integrated Earth System Information (CIESIN) within the Columbia Climate
School at Columbia University, and WorldPop at the University of Southampton. The final
statistical modelling was designed, developed, and implemented by Chris Nnanatu. Data
processing was done by Ortis Yankey with additional support from Heather Chamberlain,
Assane Gadiaga and Krishnaveni KS. Project oversight was done by Attila Lazar, Chris
Nnanatu and Andy Tatem. The PDRS data from the malaria insecticide treated net (ITN)
distribution campaigns were collected, processed, anonymised and shared by the PNLP
and its implementing partners. The settlement extent data was prepared and shared by
CIESIN (2024). The data has been clipped to GRID3-CIESIN health area extent (version
8.0) (CIESIN, 2025).



The authors followed rigorous procedures designed to ensure that the used data, the
applied method and thus the results are appropriate and of reasonable quality. If users
encounter apparent errors or misstatements, they should contact WorldPop
at release@worldpop.orq.

WorldPop, University of Southampton, and their sponsors offer these data on a "where
is, as is" basis; do not offer an express or implied warranty of any kind; do not guarantee
the quality, applicability, accuracy, reliability or completeness of any data provided; and
shall not be liable for incidental, consequential, or special damages arising out of the use
of any data that they offer. These data are operational population estimates and are not
official government statistics.

RELEASE CONTENT
1. COD_Kinshasa_province_population_v4.4_gridded.zip
2. COD_Kinshasa_province_population_v4.4_agesex.zip

LICENSE
These data may be redistributed following the terms of a Creative Commons Attribution
4.0 International (CC BY 4.0) license.

SUGGESTED CITATION
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FILE DESCRIPTIONS

The projection for all GIS files is the geographic coordinate system WGS84 (World
Geodetic System 1984). Kindly note that while this data represents population counts for
each settled pixels, values contain decimals, i.e. fractions of people. This is because both
the input population data and age-sex proportions contain decimals. For this reason, it is
advised to aggregate the rasters at a coarser scale. For example, if four grid cells next to
each other have values of 0.25 this indicates that there is 1 person somewhere in those
four grid cells. Grid cells within the national boundary with values of NA represent areas
that were mapped as unsettled according to building footprints data, while any other NA
values represent areas mapped as being outside national boundary.

COD_Kinshasa_province_population_v4_4_gridded.tif
This geotiff raster contains estimates of total population size for each approximately 100-
metre grid cell (0.0008333 decimal degrees grid) across Kinshasa. The values are the
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mean of the posterior probability distribution for the predicted population size in each grid
cell.

COD_Kinshasa_province_population_v4_4_lower.tif

This geotiff raster contains estimates of the lower bound credible interval (2.5% CI) for
each grid cell across the Kinshasa. The values are the 2.5% posterior probability
distribution for the predicted population size in each grid cell. The lower bound estimates
cannot be summed across grid cells to produce a lower credible interval measure for a
multi-cell area.

COD_Kinshasa_province_population_v4_4 upper.tif

This geotiff raster contains estimates of the upper bound credible interval (97.5% CI) for
each grid cell across Kinshasa. The values are the 97.5% posterior probability distribution
for the predicted population size in each grid cell. The upper bound estimates cannot be
summed across grid cells to produce an upper bound credible interval measure for a
multi-cell area.

COD_Kinshasa_province_population_v4_4_agesex.zip

This zip file contains 40 geotiff rasters at a spatial resolution of 3 arc-seconds
(approximately 100-metre grid cells). Each raster provides gridded population estimates
for an age-sex group per grid cell across Kinshasa. We provide 36 rasters for the
commonly reported age-sex groupings of sequential age classes for males and females
separately. These are labelled with either an “m”(male) or an “f” (female) followed by the
number of the first year of the age class represented by the data. “f0” and “mQ” are
population counts of under 1-year olds for females and males, respectively. “f1” and “m1”
are population counts of 1 to 4 year olds for females and males, respectively. Over 4
years old, the age groups are in five year bins labelled with a “5”, “10”, etc. Eighty year
olds and over are represented by the groups “f80” and “m80”. We provide four additional
rasters that represent demographic groups often targeted by programmes and
interventions. These are “under1” (all females and males under the age of 1), “under5”
(all females and males under the age of 5), “under15” (all females and males under the
age of 15) and “f15_49” (all females between the ages of 15 and 49, inclusive). These
data were produced using age-sex proportions from the 2024 WorldPop Global
subnational population pyramids for the DRC. The age-sex proportions are available per
a given province. The age-sex proportions were applied to the gridded population
estimates (COD_Kinshasa_province_population_v4_4 gridded.tif) to allocate the
population to the different age-sex classes. While this data represents population counts,
values contain decimals, i.e. fractions of people. This is because both the input population
data and age-sex proportions contain decimals. For this reason, it is advised to aggregate
the rasters at a coarser scale. For example, if four grid cells next to each other have



values of 0.25 this indicates that there is 1 person of that age group somewhere in those
four grid cells.

RELEASE HISTORY

Version 4.4 (22 December 2025)
e This is the original release of population for Kinshasa Province
in the DRC [doi: 10.5258/SOTON/WP00861] (as described in this release
statement).
e This data is released as part of a collection of population estimates for all 26 DRC
provinces: https://wopr.worldpop.org/?COD/Population/v4.4

ASSUMPTIONS AND LIMITATIONS

These population estimates most likely represent the year 2023, but because of the
different ages of the input data used to build the model, a more precise time point cannot
be assigned. The PDRS data that was used as the response variable was collected
between 2001 and 2003, while geospatial covariates data were collected from different
time periods between 2020 and 2023. Similarly, the CIESIN settlement layers were
produced in 2024. The inherent heterogeneity in the temporal alignment of these datasets
used in the modelling may introduce uncertainties and potential inaccuracies in the
modelling process.

Data on population per household (household size), collected during ITN distribution
campaigns, was aggregated to calculate total population count for a given spatial unit.
Given that the number of ITNs received by a household is proportional to the household
size, there is an incentive for respondents to potentially inflate counts of population per
household. The presence of inflated household sizes in the input population data would
likely introduce systematic biases in the modelled estimates.

The model does not account for external factors such as migration, displacement, or
sudden demographic changes, which could significantly influence population dynamics.

Grid cell alignment is based on a mastergrid. Note that this version's (v4.4) mastergrid
aligns with versions 4.1, 4.2 and 4.3 but does not align with previous DRC gridded
population layers, namely versions v1.0, v2.0, v3.0. We updated the mastergrid in 2024
to ensure grid cell alignment across all new WorldPop data products.


https://wopr.worldpop.org/?COD/Population/v4.4

SOURCE DATA
The key datasets used to produce the modelled population estimates are:

PDRS Data

The input population dataset used for the Democratic Republic of Congo (DRC)
population modelling was derived from the PDRS malaria bednet campaign data,
collected between 2021 and 2023 across the country’s provinces. The PDRS dataset
included GPS coordinates of all households within each province. For the modelling, we
constructed small-area spatial units by aggregating 100 m grid cells into larger blocks
considering the building density differences across the DRC. In urban areas, the minimum
aggregation was 4 x 4 cells, while in rural areas, where building density was lower, larger
aggregations were applied to ensure meaningful population estimates.

Settlement Data

We used the The GRID3 COD - Settlement Extents v3.1 (CIESIN, 2024) as the input
settlement layer for the population modelling. We used the spatial point shapefile
depicting the centroids of settled grid cells at 3-arc seconds (or ~100 meters). This data
contained the building count and the building area. We converted the building count per
point by rasterizing it to WorldPop mastergrid. The building count raster was then used in
population modelling.

Geospatial Covariates

A wide variety of geospatial covariates, which are related to population distribution, were
considered in the modelling. These geospatial covariates include land use and land cover
data, climate variables such as temperature and rainfall, physical features and
infrastructure such as roads and schools, and conflict data. Population model covariates
were selected using a generalized linear model (GLM) based stepwise selection method.
The selected covariates were further assessed for multi-collinearity and statistical
significance. Eventually, of the 85 geospatial covariates initially tested, 21 were retained
as the best fit covariates with variance inflation factor (VIF) of less than 5. The descriptions
of these final geospatial covariates are presented in Table 1 below.

Table 1. Selected geospatial covariates for modelling.

Description Source Link/Reference
Coefficient of variation building area (3 X|WorldPop Woods et al (2024)
3 moving window)

Coefficient of variation building area (9 X|WorldPop Woods et al (2024)
9 moving window)




Coefficient of variation building count (9
X 9 moving window)

WorldPop

Woods et al (2024)

Euclidean distance to cropland natural
vegetation 2020

WorldPop

Woods et al (2024)

Euclidean distance to sparse vegetation
2020

WorldPop

Woods et al (2024)

Euclidean distance to Tree/Herbaceous
cover 2020

WorldPop

Woods et al (2024)

Euclidean distance to Urban areas 2020

WorldPop

Woods et al (2024)

Euclidean distance to bare areas 2020 |WorldPop Woods et al (2024)

GHS Built Surface Non-Residential GHS https://human-
settlement.emergency.cop
ernicus.eu/download.php

GHS Building volume GHS https://human-
settlement.emergency.cop
ernicus.eu/download.php

Dry matter productivity 2022 Copernicus https://land.copernicus.eu/
global/products/ba

Precipitation 2022 Copernicus https://land.copernicus.eu/
global/products/ba

Euclidean distance to ACLED Strategic
development locations 2022

ACLED

https://acleddata.com/

Euclidean distance to OSM education|OSM https://www.openstreetma
facilities 2023 p.org
Euclidean distance to OSM place of OSM https://www.openstreetma
worship 2023 p.org
GHS - residential layer 2020 GHS https://human-
settlement.emergency.cop
ernicus.eu/download.php
NDVI values 2021 Copernicus https://land.copernicus.eu/
global/products/ba
Slope SRTM https://www.viewfinderpan
oramas.org/dem3.html
Nighttime light Earth https://eogdata.mines.edu/
Observation products/vnl/
Group

Euclidean distance to GRID3 health
facilities

GRID3

https://data.grid3.org/sear
ch?tags=COD

Euclidean distance to Grid3 all roads

GRID3

https://data.grid3.org/sear
ch?tags=COD




Age-Sex Proportions

We used the 2024 WorldPop Global subnational population pyramids (Bondarenko et al
2025) to calculate the age-sex proportions for Bas-Uele. We multiplied our gridded
population estimates (COD_Kinshasa_province_population_v4 4 gridded.tif) by the
gridded age-sex proportions to produce
COD_Kinshasa_province_population_v4.4_agesex.zip.

METHODS OVERVIEW
The key steps of our approach were as follows:

Cleaning household dataset from the PDRS by removing extreme outliers from
the data.

Summarizing the household sizes from the PDRS dataset to get the total
population at the modelling unit

Geospatial covariates were subjected to robust covariate selection for model
training and parameter estimation.

We developed a hierarchical Bayesian statistical model using the INLA-SPDE
approach (Lindgren et al. 2011) to fit and predict the population count.
Population estimates were predicted at grid cell level using the grid cell values of
the covariates selected at the model training level.

Data cleaning

The data cleaning process followed a series of steps to ensure that our population data
was reliable and consistent:

We used microcensus data collected in selected provinces of the DRC in 2018 and
2021 as a benchmark for cleaning the PDRS dataset. These provinces included
Kinshasa, Kongo-Central, Kwango, Kwilu, Mai-Ndombe, Haut-Katanga, Haut-
Lomami, Ituri, Kasai, Kasai-Oriental, Lomami, and Sud-Kivu.

For each province with microcensus data, and for each modelling unit within the
province, we calculated the mean population density (i.e. people per building) by
dividing the observed total (microcensus) population with the number of buildings
extracted from the CIESIN dataset. We then summarized these densities for each
province, identifying key statistics such as the maximum observed density within
the province.



e We repeated the same process using the PDRS data by calculating the mean
population density (i.e. people per building) for each modelling unit from the total
observed population and the extracted (CIESIN) building counts.

e To find and address the likely extreme values, we removed any modelling units,
where the mean PDRS population density value was higher than the maximum
population density observed in the microcensus for that province. For provinces
without microcensus data, we applied a global threshold of 29.98 people per
building, that was calculated as the maximum population density of all the
microcensus observations.

e Furthermore, we removed modelling units with no CIESIN building count and also
those without observed PDRS population.

After implementing the above data cleaning steps, 4% of the modelling unit were dropped
from the data. This process helped us ensure that observed spatial demographic
characteristics were considered, and thus the dataset was free from unrealistic high
values and suitable for use in the modelling work that followed.

Statistical Modelling

All data processing, statistical modelling, and analyses were carried out using R version
4.4.2 (R Core Team, 2023), tidyverse (v. 2.0.0) (Wickham et al., 2019), SF (v. 1.0-17)
(Pebesma and Bivand, 2023), and Terra (v. 1.7—78) (Hijmans et al., 2024). Bayesian
hierarchical modelling was implemented using the R-INLA package version 24.12.11
(Rue et al. 2009). Modelled estimates of the population were produced using a bottom-
up population modelling framework (Wardop et al., 2018), which utilises a Bayesian
statistical inference framework that can be implemented using either a Markov chain
Monte Carlo (MCMC)-based strategy (Leasure et al., 2020; Boo et al. 2022; Darin et al.,
2022) or the integrated nested Laplace approximation in conjunction with the stochastic
partial differential equation (INLA-SPDE; Rue et al., 2009; Lindgren et al., 2011)
techniques recently developed by Nnanatu et al. (2022) in the context of Cameroon
(Nnanatu et al., 2022; Nnanatu et al., 2025a), and applied in Papua New Guinea
(Nnanatu et al., 2024) and the Democratic Republic of Congo (e.g., Nnanatu et al.,
2025b).

Model Specification

In general, the population count N; at a given (ideally geolocated) area unit is assumed
to be Poisson-distributed, such that N; ~ Poisson(4;). However, in the context of small
area population modelling (Leasure et al., 2020; Boo et al. 2022 ; Darin et al.,2022;
Nnanatu et al., 2022; Nnanatu et al., 2024a; Nnanatu et al., 2024b; Nnanatu et al.,
2025), a key assumption of the Poisson model which requires both mean and variance
to be equal is often violated due to overdispersion in which case mean(N;) # var(N;).



For this reason, the mean parameter 4; is usually expressed in terms of population
density to account for spatial aggregation error (e.g., Leasure et al 2020, Nnanatu et al
2022). Typically, the mean parameter is given as A; = y;B;, where B; is the total
number of buildings within a pre- enumeration area (pre-EA) i and
pop;
D; = B, (D
is the population density defined as the number of people per building which follows a
Gamma distribution given by
D; ~ Gamma(a,, a;,) (2)

where a; and «a, are the shape and rate parameters with mean p; = a,/a, and
variance ¢ = a, /a2, respectively. The predicted population density D; for pre-EA i is
given by

D; = exp(XiTﬁ +Zly +&(s) + fi) 3)

where X and Z are the design matrices of fixed effect covariates (e.g., average annual
precipitation, average annual temperature, distance to crop land) and random effects
(e.g., settlement type), respectively. Also, the terms g € R&*V and y are the vectors of
fixed effects regression parameters and random effects variances, respectively. While
the terms £(s;) and ¢; are the spatially varying and spatially independent random
effects accounting for spatial autocorrelations and dissimilarities between observations,
respectively. We have that the term £(s;) is a Gaussian Random Field (GRF) such that

$(s;) ~ GRF(0,X) (4)
where X is a dense covariance matrix. The INLA-SPDE approach allows us to
approximate the GRF using a computationally efficient Gaussian Markov Random Field
(GMREF) by discretising the continuous spatial domain using mesh (Lindgren et al.,
2011). The random term ¢; is assumed to follow a zero-mean Gaussian distribution
specified by

{; ~ Normal(0,0) (5)
where ag > 0 is a variance parameter. Then, finally, the predicted population counts at
grid cell g is obtained as

N, =D, x B, (6)

where ﬁg is the predicted population density in grid cell g using the corresponding grid
cell covariate values and the model parameter values based on equation (3); B, is the
corresponding building count for grid cell g (g = 1, ..., G). The prediction covariates
included G grid cells at 100m-by-100m resolution, and population counts were predicted
in each grid cell that contains values of building counts.

All models were implemented within the integrated nested Laplace approximation
(INLA; Rue et al, 2009) in conjunction with the stochastic partial differential equation



(SPDE Lindgren et al, 2011) frameworks. It allowed us to gain more computational
advantage by discretizing the entire study location continuous space into a Gaussian
Markov random fields (GMRF) process. To ensure flexibility and better capture local
variabilities within the data, we used the Penalized Complexity (PC) (Simpson et al.,
2017) on the standard deviation parameters throughout, such that a small probability of
0.01 is assigned to the standard deviation o being greater than 1, thatis, P(¢ > 1) =
0.01.

Model fit checks

Model fit checks was conducted using the Bias, mean absolute error (MAE), the root
mean square error (RMSE) and the correlation coefficient (CC). Smaller values of for
the Bias, MAE and RMSE indicate better fit and predictive ability while larger values of
CC indicate better predictive ability. Table 2 below shows the model fit metrics

Table 2. Goodness of fit results

Bias 1.57
MAE 163.99
RMSE 286.92
CcC 0.66

Further posterior inference and grid cell predictions were also carried out. The
prediction at the grid cell uses the model parameters of the best fit training set model to
predict population counts at 100m-by-100m grid cells across the study location using
the corresponding grid cell values of the geospatial covariates and the building counts.
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