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Abstract

This data release provides gridded population estimates (spatial resolution of 3 arc-
seconds, approximately 100-metre grid cells) for Sankuru Province in the Democratic
Republic of Congo (DRC), along with estimates of the number of people belonging to
various age-sex groups. The project team used the Pre-Distribution Registration Survey
(PDRS) data from the National Malaria Control Programme (PNLP) collected as part of
anti-malarial campaigns in the DRC for 2022, settlement extents and geospatial
covariates to model and estimate population numbers at grid cell level using a Bayesian
statistical hierarchical modelling framework. The approach facilitated simultaneous
accounting for the multiple levels of variability within the data. It also allowed the
quantification of uncertainties in parameter estimates. These model-based population
estimates can be considered as most accurately representing the year 2022. This time
period corresponds to the PDRS survey date for Sankuru. Although the methods were
robust enough to explicitly account for key random biases within the datasets, it is noted
that systematic biases, which may arise from sources other than random errors within the
observed data collection process, are most likely to remain.

These data were produced by the WorldPop Research Group at the University of
Southampton. This work was part of the GRID3 — Phase 2 Scaling project, with funding
from the Gates Foundation (INV-044979). Project partners included GRID3 Inc, the
Center for Integrated Earth System Information (CIESIN) within the Columbia Climate
School at Columbia University, and WorldPop at the University of Southampton. The final
statistical modelling was designed, developed, and implemented by Somnath Chaudhuri.
Data processing was done by Ortis Yankey with additional support from Heather
Chamberlain. Project oversight was done by Chris Nnanatu, Attila Lazar, and Andy
Tatem. The PDRS data from the malaria insecticide treated net (ITN) distribution
campaigns were collected, processed, anonymised, and shared by the PNLP and its
implementing partners. The settlement extent data was prepared and shared by CIESIN
(2024). The data has been clipped to GRID3-CIESIN health area extent (version 8.0)
(CIESIN, 2025).



The authors followed rigorous procedures designed to ensure that the used data, the
applied method and thus the results are appropriate and of reasonable quality. If users
encounter apparent errors or misstatements, they should contact WorldPop
at release@worldpop.orq.

WorldPop, University of Southampton, and their sponsors offer these data on a "where
is, as is" basis; do not offer an express or implied warranty of any kind; do not guarantee
the quality, applicability, accuracy, reliability or completeness of any data provided; and
shall not be liable for incidental, consequential, or special damages arising out of the use
of any data that they offer. These data are operational population estimates and are not
official government statistics.

RELEASE CONTENT
1. COD_Sankuru_province_population_v4.4 _gridded.zip
2. COD_Sankuru_province_population_v4.4 _agesex.zip

LICENSE
These data may be redistributed following the terms of a Creative Commons Attribution
4.0 International (CC BY 4.0) license.

SUGGESTED CITATION

Chaudhuri S., Yankey O., Nnanatu C., Chamberlain H., Lazar A. N., Tatem A. J. 2025.
Bottom-up gridded population estimates for Sankuru Province in the Democratic
Republic of Congo (2022), version 4.4. WorldPop, University of Southampton. doi:
https://dx.doi.org/10.5258/SOTON/WP00872

FILE DESCRIPTIONS

The projection for all GIS files is the geographic coordinate system WGS84 (World
Geodetic System 1984). Kindly note that while this data represents population counts,
values contain decimals, i.e. fractions of people. This is because both the input population
data and age-sex proportions contain decimals. For this reason, it is advised to aggregate
the rasters at a coarser scale. For example, if four grid cells next to each other have
values of 0.25 this indicates that there is 1 person somewhere in those four grid cells.

COD_Sankuru_province_population_v4 4 gridded.tif

This geotiff raster contains estimates of total population size for each approximately 100-
metre grid cell (0.0008333 decimal degrees grid) across Sankuru Province. The values
are the mean of the posterior probability distribution for the predicted population size in
each grid cell. Grid cells within the national boundary with values of NA represent areas
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that were mapped as unsettled according to building footprints data, while any other NA
values represent areas mapped as being outside national boundary.

COD_Sankuru_province_population_v4_ 4 lower.tif

This geotiff raster contains estimates of the lower bound credible interval (2.5% CI) for
each grid cell across Sankuru. The values are the 2.5% posterior probability distribution
for the predicted population size in each grid cell. The lower bound estimates cannot be
summed across grid cells to produce a lower credible interval measure for a multi-cell
area. Grid cells within the national boundary with values of NA represent areas that were
mapped as unsettled according to building footprints data, while any other NA values
represent areas mapped as being outside national boundary.

COD_Sankuru_province_population_v4_4 upper.tif

This geotiff raster contains estimates of the upper bound credible interval (97.5% CI) for
each grid cell across Sankuru. The values are the 97.5% posterior probability distribution
for the predicted population size in each grid cell. The upper bound estimates cannot be
summed across grid cells to produce an upper bound credible interval measure for a
multi-cell area. Grid cells within the national boundary with values of NA represent areas
that were mapped as unsettled according to building footprints data, while any other NA
values represent areas mapped as being outside national boundary.

COD_Sankuru_province_population_v4_4_agesex.zip

This zip file contains 40 geotiff rasters at a spatial resolution of 3 arc-seconds
(approximately 100-metre grid cells). Each raster provides gridded population estimates
for an age-sex group per grid cell across Sankuru. We provide 36 rasters for the
commonly reported age-sex groupings of sequential age classes for males and females
separately. These are labelled with either an “m”(male) or an “f" (female) followed by the
number of the first year of the age class represented by the data. “f0” and “mQ” are
population counts of under 1-year olds for females and males, respectively. “f1” and “m1”
are population counts of 1- to 4-year-olds for females and males, respectively. Over 4
years old, the age groups are in five-year bins labelled with a “5”, “10”, etc. Eighty-year-
olds and older are represented by the groups “f80” and “m80”. We provide four additional
rasters that represent demographic groups often targeted by programmes and
interventions. These are “under1” (all females and males under the age of 1), “under5”
(all females and males under the age of 5), “under15” (all females and males under the
age of 15) and “f15_49” (all females between the ages of 15 and 49, inclusive). These
data were produced using age-sex proportions from the 2024 WorldPop Global
subnational population pyramids for the DRC. The age-sex proportions are available per
a given province. Hence, we applied the age-sex proportions for Sankuru to the gridded



population estimates (COD_Sankuru_province_population_v4_4 gridded.tif) to allocate
the population to the different age-sex classes.

RELEASE HISTORY
Version 4.4 (22 December 2025)

e Thisis a minor update for Sankuru province data [doi: 10.5258/SOTON/WP00872].
The data was produced by clipping the data to GRID3-CIESIN health area extent
(version 8.0) (CIESIN, 2025). Otherwise, the estimated total population and the
model design and methodology have not changed since version 4.2

e This data is released as part of a collection of population estimates for all 26 DRC
provinces: https://wopr.worldpop.org/?COD/Population/v4.4

Version 4.3 (29 August 2025)

e Thisis a minor update for Sankuru province data [doi: 10.5258/SOTON/WP00838].
The data was produced by clipping the data to GRID3-CIESIN health area extent
(version 6.0) (CIESIN, 2025). Otherwise, the estimated total population and the
model design and methodology have not changed since version 4.2

e This data is released as part of a collection of population estimates for 17 DRC
provinces: https://wopr.worldpop.org/?COD/Population/v4.3

Version 4.2 (13 March 2025)

e Original release of the population dataset for Sankuru province [doi:
10.5258/SOTON/WP00792]. This data release utilizes operational National
Malaria Control Programme data, composite, openly accessible building footprint
datasets and a new mastergrid.

e This data is released as part of a collection of population estimates for 11 DRC
provinces: https://wopr.worldpop.org/?COD/Population/v4.2

ASSUMPTIONS AND LIMITATIONS

These population estimates most likely represent the year 2022, but because of the
different ages of the input data used to build the model, a more precise time point cannot
be assigned.. The PDRS data that was used as the response variable was collected in
2022, while geospatial covariates data were collected from different time periods between
2020 and 2023. Similarly, the CIESIN settlement layers were produced in 2024. The
inherent heterogeneity in the temporal alignment of these datasets used in the modelling
may introduce uncertainties and potential inaccuracies in the modelling process.

Data on population per household (household size), collected during ITN distribution
campaigns, was aggregated to calculate total population count for a given spatial unit.
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Given that the number of ITNs received by a household is proportional to the household
size, there is an incentive for respondents to potentially inflate counts of population per
household. The presence of inflated household sizes in the input population data would
likely introduce systematic biases in the modelled estimates.

The statistical model predicted unrealistically high population estimates for some rural
grid cells with a low building count from the CIESIN settlement layer. These Grid cells are
clustered around the following coordinates: (24°1'55.359"E 4°47'4.459"S, 24°1'55.68"E
4°46'568.784"S, 24°1'52.682"E 4°47'4.673"S). We found that the unrealistic population
count in these rural grid cells has largely been driven by the PNLP input population count,
which was unusually high for a rural cluster.

The model does not account for external factors such as migration, displacement, or
sudden demographic changes, which could significantly influence population dynamics.

Grid cell alignment is based on a mastergrid. Note that this version's (v4.4) mastergrid
aligns with versions 4.1, 4.2 and 4.3 but does not align with previous DRC gridded
population layers, namely versions v1.0, v2.0, v3.0. We updated the mastergrid in 2024
to ensure grid cell alignment across all new WorldPop data products.

SOURCE DATA
The key datasets used to produce the modelled population estimates are:

PDRS Data

The input population dataset used for the population modelling for Sankuru Province was
the PDRS malaria bednet campaign data. The PDRS dataset, which was collected in
2022, provided detailed information on a given household for which a bednet was issued,
such as the household size, the number of bednets issued, the number of children in the
household, the number of males, and the number of females, among others.

Although the malaria bednet campaign was designed to distribute bednet to every
household within the province, a preliminary exploratory data analysis carried out on the
PDRS data indicated that some households were not visited during the campaign, while
others were not completely covered.

The GPS points of all households within the province were provided in the PDRS data.
We implemented population modelling for small spatial units, utilising unofficial
boundaries similar to census enumeration areas ("pre-EAs"; Qader et al., 2024). The
household-level data on population counts was spatially aggregated to these spatial units,
by summing the household size data for all GPS points within each pre-EA boundary.

Settlement Data



Settlement data was provided by CIESIN in the form of raster files (CIESIN, 2024). We
obtained two different settlement products, namely (i) settlement area, which indicates
the area of all buildings whose centroid falls within a given cell, and (ii) building count,
which is the number of building centroids within a given cell. Each of these settlement
layers was used in separate analyses together with the observed population count and
ancillary geospatial data in robust statistical modeling. After using each settlement layer
in the analysis, we compared model metrics and the gridded population layer from both
layers. Settlement building count provided more realistic population numbers at the
gridcell level and hence was retained for the final population predictions.

Geospatial Covariates

A wide variety of geospatial covariates, which are related to population distribution, were
considered in the modelling. These geospatial covariates include land use and land cover
data, climate variables such as temperature and rainfall, physical features and
infrastructure such as roads and schools, and conflict data. Population model covariates
were selected using a generalized linear model (GLM) based stepwise selection method.
The selected covariates were further assessed for multi-collinearity and statistical
significance. Eventually, of the 80 geospatial covariates initially tested, 6 were retained
as the best fit covariates with variance inflation factor (VIF) of less than 5. The descriptions
of these final geospatial covariates are presented in Table 1 below.

Table 1. Selected geospatial covariates for the modelling.

Description Source Link/Reference
Coefficient of variation — Microsoft building|Microsoft https://github.com/microso
length 2022 ft/RoadDetections
Coefficient of variation — Google building|Google https://sites.research.goog
length 2021 le/gr/open-buildings/

Mean burnt area per 100m pixel 2021 |Copernicus |https://cds.climate.coperni
(Calculated from total burn area in square cus.eu/cdsapp#!/dataset/si
meter) s-agrometeorological-

indicators?tab=form
Standard deviation productivity per 100m|Copernicus |https://cds.climate.coperni
pixel 2022 cus.eu/cdsapp#!/dataset/si
s-agrometeorological-
indicators?tab=form
Standard deviation NDVI per 100m pixel|Copernicus |https://cds.climate.coperni
2021 cus.eu/cdsapp#!/dataset/si
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s-agrometeorological-
indicators?tab=form
Travel time to the nearest health facility -|GRID3 https://data.GRID3.org/se
walking arch?q=COD4&sort=Date%
20Created%7Ccreated%7
Cdesc&tags=v3

Age-Sex Proportions

We used the 2024 WorldPop Global subnational population pyramids (Bondarenko et al
2025) to calculate the age-sex proportions for Sankuru. We multiplied our gridded
population estimates (COD_Sankuru_province_population_v4_4_gridded.tif) by the
age-sex proportions(grouping) to produce
COD_Sankuru_province_population_v4.4 _agesex.zip.

METHODS OVERVIEW

The key steps of our approach were as follows:

e Cleaning and summarizing the household sizes from the PDRS dataset to get the
total population at the pre- enumeration area (pre-EA) level (Qader at al. 2024).

e Household sizes from the PDRS data point ranged between 1 and 20. Out of
478842 PDRS data points, 1730 data points had a household size of NA. Points
with a household size of NA were non-residential buildings such as hotels,
marketplaces, military training camps, etc. These observations were hence
removed from the dataset.

o Geospatial covariates were subjected to robust covariate selection for model
training and parameter estimation.

« We developed a hierarchical Bayesian statistical model using the INLA-SPDE
approach (Lindgren et al. 2011) to fit and predict the population count.

e Population estimates were predicted at grid cell level using the grid cell values of
the covariates selected at the model training level.

Statistical Modelling

In general, within the context of bottom-up population modelling (Leasure et al. 2022, Boo
et al., 2022; Darin et al., 2022, Nnanatu et al. 2022), the observed population count at
area unit k, yy, is a Poisson distributed random variable with mean parameter A,, = dy By
where k is the estimation unit (e.g., enumeration area), while d, and By are the mean



parameter of the corresponding population density and the number of buildings/settled
area, respectively. That is,

Vi ~ (diBy) (1)

Then, the transformed mean population density d, is assumed to be linked to a set of
geospatial covariates with log-link function:

J L
log(@) = u+ ) Bxg+ ) i) @
j=1 1=1

where u is the intercept parameter, B = (B,, ... B;) is a vector of fixed effects coefficients
of the (x4, ...,Xj) geospatial covariates; fi(.) is a function of L random effects covariates
including those that capture variability in the population estimates due to settlement type,
cluster location and spatial autocorrelations. The population density (defined as people
per building or people per settled area) is assumed to be a Gamma distributed random
variable with parameters a and y with mean and variance given by dy = a/y and o3 =
o/y?, respectively.

The inclusion of spatial autocorrelation requires the use of computationally efficient
statistical modelling software. Thus, the integrated nested Laplace approximation (INLA;
Rue et al 2009; Lindgren et al., 2011) is used via the R-INLA statistical package. Note
that the method described above predicts population count at regular grid cells using the
parameter values trained at the cluster/pre-EA level by calculating the predicted grid-cell
level population density as

L

J
ag =exp| i+ z ijg]- + z f (zgl) 3)
j=1

=1

where {xg}:=1 are the corresponding grid cell level values of the geospatial covariates

used in training the model at the cluster level, so that the overall predicted population
count across the G 100m by 100m grid cells is given by

G
poP = ) Bydy 4)
g=1

where B, is the corresponding building count or the size of settled area in grid g. We
assumed default INLA priors for each of the parameter estimates which have been found
to be robust.



In this study, we approached the population modelling using two competing settlement
layers, i.e., building count and building area to define population density. Thus, we had
two separate models. In the first model, population density was defined as people per
building count, and in the second model, population density was defined as people per
settled area. These two models were fitted, and the best model based on model metrics
was selected for the final predictions.

In this study, we used building count to define population density. Within this framework,
we tested three different model re-parameterizations. The first model, Model 1, included
fixed effects for the geospatial covariates and a random effect for the Global Human
Settlement Layer Degree of Urbanization classes (GHSL-SMOD). Model 2 extended this
by incorporating an additional random effect at the cluster level. The final model, Model
3, further included a spatial random effect component in addition to the specifications in
Model 2. These three models were compared, and the model with the best fit was selected
for final predictions.

Model fit checks.

Model fit checks and model selection of the three models described above relied primarily
on a constellation of model fit metrics, including the absolute bias (BIAS), the Mean
Absolute Error (MAE), the Root Mean Square Error (RMSE), the Deviance Information
Criterion (DIC) and the Pearson correlation coefficient (CORR). A lower value for the
absolute bias, MAE and the RMSE and the DIC indicates a better-fit model. A higher
value for the Pearson correlation coefficient indicates a better-fit model. Table 2 below
provides the model-fit metrics across the three models. Based on the model fit checks,
model 3 provided the best fit, and the final population predictions at the grid cell level
were based on this model.

Table 2. Model fit metrics.

Models BIAS RMSE MAE DIC Corr
Model1 -42.39 935.89 276.58 29632 0.71
Model 2 -18.98 712.32 172.53 28757.04 0.84
Model 3 -8.04 705.27 170.17 27854.35 0.85

The novelty of the modelling approach utilised here is that it allows for the adjustment of
potential systematic bias in the two settlement layers used as input in defining population
density within a coherent Bayesian hierarchical population modelling framework while at
the same time adjusting for spatial autocorrelation within the observed data.

All data processing and analysis was carried out using R (v.4.3.2) (R Core Team, 2023)



and INLA (v 22.05.07) (Rue et al. 2009). The concept of bottom-up population modelling
for estimating population in the absence of recent census data was described by Leasure
et al. (2020). Approaches similar to the one used here for Haut-Katanga have been
carried out for Papua New Guinea (Nnanatu et al. 2024) and Cameroun (Nnanatu et al.
2022)
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