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Modelled Population Estimates for Papua New Guinea 
  A TWO-STEP BAYESIAN HIERARCHICAL GEOSTATISTICAL MODEL  

Executive Summary  
This project was initiated in 2021 to generate modelled population estimates for Papua New 
Guinea (PNG) to support their census preparations. It was powered by the Australian 
Government through the PNGAus partnership, the United Nations Population Fund UNFPA 
and the PNG National Statistical Office. The overarching aims of the project are to: 

• Develop and test methods and procedures for predicting population numbers at sub-
national scales, with age and sex breakdowns and associated uncertainty measures. 

• Produce sex- and age-disaggregated population estimates using the methods developed. 
• Ensure approaches are coordinated and integrated into government national census 

efforts and can be readily updated when new data becomes available. 
• Undertake training of NSO and other relevant departments to ensure that methods are 

understood and that the outputs can be effectively used within the government. 

All the technical aspects of the project were led by WorldPop at the University of 
Southampton including the generation of estimates of population for PNG. The technical 
processes used included bespoke population modelling techniques that combine multiple 
data sources along with key geospatial covariates, satellite observations and population 
datasets. WorldPop is a global leader in the production of modelled population numbers with 
a track record for reliably estimating country-wide population numbers and distributions 
using geospatial datasets and statistical models.  

The project team combined recent 2019-2021 malaria bednet campaign data, urban 
structural listing 2021 data, and geospatial covariates to model and estimate population 
numbers at census unit level, and aggregate at other relevant administrative units (e.g., 
national, province, and districts) using a Bayesian statistical hierarchical modelling framework. 
The approach facilitated simultaneous accounting for the multiple levels of variability within 
the data hierarchy. It also allowed the quantification of uncertainties in parameter estimates. 

Initial modelling work produced a wide range of population estimates, with some large values. 
However, the three final models all estimated the national population size to be between 11 
and 12 million. The best fit model indicated that the total population of Papua New Guinea 
based on the compiled datasets is 11.78M with a 95% credible interval of 11.64-12.03M. 
These model-based population estimates can be considered as most accurately representing 
the years 2020-21. This time period corresponds to the malaria survey and urban structural 
listing survey observations (2019-2021; median year: 2020) and the period of the satellite 
imagery used to generate settlement footprints (2021). Although the methods were robust 
enough to explicitly account for key random biases within the datasets, it is noted that 
systematic biases, which may arise from sources other than random errors within the 
observed data collection process, are most likely to remain. Thus, it is important to bear in 
mind that the estimates of population reported here are only as good as the input datasets.  

Although the final model provided the best fit to the data with small margin of error even at 
the census unit level, the validation of these modelled estimates using a more detailed 
population and housing census data is highly recommended. In addition, these estimates 
could be improved by using datasets from upcoming household surveys in conjunction with 
new satellite-derived settlement data and geospatial covariates.  
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Definition of Terms 
CU – Census Unit 

DHS – Demographic and Health Surveys 

DRC – Democratic Republic of Congo  

GAMM – Generalized Additive Mixed Model 

GLM – Generalized Linear Model 

GMRF – Gaussian Markov Random Field 

INLA – Integrated Nested Laplace Approximation  

LLG –Local Level Government 

LLIN – Long-Lasting Insecticidal Nets 

NSO – National Statistical Office  

PNG – Papua New Guinea 

RAM – Rotarians Against Malaria  

SPDE – Stochastic Partial Differential Equation 

UNFPA – United Nations Population Fund 
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1. INTRODUCTION 
It is now more than 11 years since the fourth National Population and Housing Census was 
conducted in Papua New Guinea (PNG) in July 2011. Although preparations for the fifth 
census are advanced, it has been deferred due to the COVID-19 pandemic and funding gaps, 
possibly until 2024. Thus, there is a need for intercensal national and subnational 
demographic data on populations across various administrative units in PNG to enable robust 
and accurate planning for upcoming development decisions. Recent geospatial data exist 
(e.g., Pilot Census, Demographic and Health Surveys (DHS) 2016-18, 2013-2021 malaria 
long-lasting insecticidal net (LLIN) campaign data, Urban Structural Listing 2021, Copernicus 
data products/layers, Health facility location survey, and WFP mVAM food security and 
livelihoods survey data) that could be utilised for constructing population estimates.  

WorldPop at the University of Southampton has developed capacity over recent years in 
estimating population numbers and distributions across multiple countries using geospatial 
datasets and statistical models. Such operational population estimates are valuable in 
supporting updated planning efforts for the upcoming census, while also providing interim 
data for national decision making until the fifth housing and population census is completed. 
Moreover, the models have potential for use in producing small area inter-censal updates.  

With the financial support of the Australian Government and PNGAus partnership, UNFPA 
and the PNG National Statistical Office initiated the population estimation project in 2021. 
The project aims to create operational small area estimates of population distribution and to 
ensure that the project deliverables, both the methods and data, can be of sustainable use by 
the Government of PNG, academics and researchers, development and aid agencies, civil 
society and other concerned parties long after project completion. The specific objectives of 
the work are to: 

1. Develop and test methods and procedures for predicting population numbers at sub-
national scales, with age and sex breakdowns and associated uncertainty measures. 

2. Produce sex- and age-disaggregated population estimates using the methods 
developed. 

3. Ensure approaches are coordinated and integrated into government national census 
efforts and can be readily updated when new data becomes available. 

4. Undertake training of NSO and other relevant departments to ensure that methods 
are understood and that the outputs can be effectively used within the government. 
 

Geospatial modelling approaches have recently been developed and used to provide 
subnational-scale estimates of population numbers with associated confidence intervals in a 
range of countries (UNFPA, 2017). Such ‘bottom-up’ approaches leverage the spatial 
relationships at local scales between enumerated population densities from samples and a 
range of geospatial datasets (Figure 1, https://youtu.be/Z1XrHOt8w2A). These geospatial 
datasets are derived from satellite imagery, government mapping and other sources, to build 
and validate statistical models that are then used to estimate population numbers in areas 
where only the geospatial datasets are available. 
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Figure 1: A schematic representation of the bottom-up modelling techniques. It combines (usually 
incomplete sampling-based data) with geospatial covariates along with geospatial observations. 

 

Application of these approaches have included census-independent population estimation in 
Nigeria (Leasure et al., 2020) and DR Congo (Boo et al., 2022), complementing census with 
estimated populations in inaccessible areas in Burkina Faso (WorldPop and INSD, 2019) and 
national population mapping across both government- and non-government-controlled areas 
in Afghanistan (unpublished dataset). Active collaborations with national statistical offices in 
Thailand, Brazil, Colombia, Cameroon, Zambia, South Sudan, Mali, Kenya and Mozambique, 
among others, are also ongoing. 

WorldPop’s ‘Bottom-up’ modelling approach has been applied here for PNG. This method 
combines geospatial covariates available for the entire region of study with observed 
population data available from household surveys in a hierarchical Bayesian framework  
(Wardrop et al, 2018; https://www.worldpop.org/methods/populations/). The data used and 
the methods applied are described below.  

 

2. DATA SOURCES 

2.1 Survey data 
Table 1: Data source and data description. 

Survey Dates Coverage Spatial 
resolution 

Measures 

Demographic 
Housing 
Surveys (DHS) 

2016-
18 

767 
clusters 

‘Cluster’-
level: based 
on Census 
Unit areas 
(whole or 
segments), 
~24 
households 
enumerated 
per cluster. 

Basic indicators of fertility, fertility 
preferences, family planning 
practices, childhood mortality, 
maternal and child health, 
knowledge and awareness of 
HIV/AIDS, domestic violence, and 
other related health issues. 
Includes household count & 
age/sex. 

Urban 
Structural 
Listing 

2021 1,959 CUs Census Unit Characteristics of structures within 
urban areas. Includes household 
counts. 
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Survey Dates Coverage Spatial 
resolution 

Measures 

Malaria Long-
Lasting 
Insecticidal Net 
(LLIN) survey 
data 

2019-
21 

15,468 
CUs 

Census Unit Household counts and age/sex. 

Pilot census 2019-
20 

12 CUs Census Unit Full census data including 
household counts and age/sex. 

Mobile 
Vulnerability 
Analysis and 
Mapping Food 
Security & 
Livelihoods 
Validation 
Assessment 

2016 
- 17 

 3708 (19 
household
s per LLG) 
 

Individuals 
randomly 
contacted 
 

Phone-based survey to assess the 
impact on the 2015-2016 El Nino 
drought on food security and 
wellbeing. Includes information on 
the health impacts, qualitative 
assessment of hunger, help 
received by government/NGO’s, 
food currently available, etc.  

Malaria Long-
Lasting 
Insecticidal Net 
(LLIN) survey - 
Milne Bay 

2020 821 
villages 

Village Population estimations based on 
last RAM survey (2016) and 2000 
census using annual growth rates 
for Milne Bay, plus actual 
population surveyed, and number 
of nets distributed.  

 

The NSO provided several survey datasets for use in this study (Table 1) including DHS, 
Urban Structural Listing, Malaria LLIN survey and a pilot census. Of these, the most recent 
and most reliable data, the Urban Structural Listing (1,959 CUs surveyed in 2021) and Malaria 
surveys (15,468 CUs, manually digitised for the 2019-21 period) were used in the population 
estimation model. This is because they were full enumerations of the lowest administrative 
boundaries (CUs) and had good spatial coverage. The DHS survey was not a full enumeration 
of CUs and thus has large inherent uncertainties when used for estimating the population 
size. Similarly, the pilot census had low spatial coverage, having surveyed only 12 CUs.  

There was a 524 CUs overlap between the malaria LLIN and urban structural listing datasets 
with no clear relationship between the values (i.e., some were higher and some were lower 
than the other). Therefore, in these CUs, it was decided that an average of the two would be 
used in the population modelling. Only the malaria LLIN survey had age/sex disaggregated 
observations.  

 

2.2 Administrative boundaries 
From smallest to largest, the administrative levels for Papua New Guinea are: CUs (Census 
Units), Wards, LLGs (Local Level Governments), Districts and Provinces. There are 24 
provinces in Papua New Guinea (Figure 2). 
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Figure 2: Map of Papua New Guinea showing the 24 Provinces 

Two administrative boundary shapefiles were provided for Papua New Guinea by the NSO – 
one showing CU boundaries and the other showing LLG-level boundaries. A point shapefile 
was also provided where each point represents a CU. However, following advice from the 
NSO this was disregarded because of its limited use in the model. Shapefiles showing ward, 
district, province and national level boundaries were produced using the ‘Dissolve’ data 
management tool in ArcGIS Pro, based on their respective codes/names provided in the 
attribute table of the CU level shapefile. Any topological errors were then cleaned (see 
section 3.2.1 for further details). The CU shapefile consists of a combination of well-defined 
boundaries (particularly in urban areas) and Voronoi polygons (largely in rural areas) produced 
from settlement-derived points. It is assumed the settlements from which these points were 
generated sit entirely within each Voronoi polygon.  

 

2.3 Settlement data 
The Planet (www.planet.org) experimental non-public settlement data product was 
downloaded from the Planet API, where it was made available to WorldPop through a sharing 
agreement as a tiled product. The settlement data product provides information on the 
locations of buildings/settlements in gridded (raster) format (Figure 3). The settlement raster 
was created through the classification of available cloud-free satellite imagery from a 7-
month period (July 2021 – January 2022), with classified outputs compiled to create a single 
gridded output. Values in the settlement raster range from 0 to 254 with higher values 
indicating a higher likelihood of settlement. The gridded dataset in geoTiff format has a 
spatial resolution of approximately 4.77 metres and is projected in World Mercator Auxillary 
Sphere (EPSG: 3857). 
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A known issue with satellite-derived building/settlement mapping datasets is the permanent 
canopy or cloud cover that prevent known settlements from being seen on images. 
Comparison with Facebook HRSL data (https://ciesin.columbia.edu/data/hrsl/) for PNG 
revealed that both suffer from the same issue and the Planet data was generally a higher 
quality mapping of buildings/settlements, with substantially finer resolution available too.  

The project also had access to Esri-generated building footprints (n.d.). However, as this 
source lacked building data for large areas, it was not considered suitable for population 
modelling. 

 

  

Figure 3: An example of settlement and roads (right image) extracted from satellite imagery 
(left image) by Planet (2021). Extracted buildings (green) and roads (red) overlayed on the 

satellite image on the right image. 

 

2.4 Geospatial covariates 
2.4.1 Sourcing covariate data 
Geospatial covariates are data related to population density or the spatial distribution of the 
population. They are needed for population estimation modelling, as relationships between 
the covariates in locations with enumerated population data can be used to estimate 
population in locations without enumeration population counts. This requires that geospatial 
covariate datasets must cover the entire study area for which population is being estimated 
(Wardrop et al., 2018).  

A wide range of covariates were considered in the development of modelled population 
estimates for Papua New Guinea, ranging from topography through climate and land 
use/land cover to settlement information (two examples are shown in Figure 4). In total, 52 
geospatial covariates were considered at the start of the covariate selection process (see 
Appendix 1), with the initial list of covariates informed by previous WorldPop projects. All 
geospatial covariates were created as gridded (raster) datasets with a harmonised spatial 
resolution and grid cell alignment, from which spatially aggregated summary statistics were 
calculated.  
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Figure 4: Example covariates used in the population modelling 

 

The geospatial covariates came from a number of different data sources, drawing on publicly 
available datasets including products and data on features such as roads, rivers and points of 
interest (POIs). The diverse nature of the geospatial covariates together provide data on a 
wide range of factors considered to be related to the density and spatial distribution of 
population. For example, the distribution and density of population is likely to be related to 
the distance to the nearest major road, with higher population density and counts potentially 
closer to major roads. Using roads data from OpenStreetMap (OSM), the distance to roads 
were calculated using a Euclidean distance calculation. For factors such as slope and 
topography, global datasets providing information on elevation were included. Climatic 
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factors such as precipitation totals were calculated from satellite-based observations, as were 
landcover classifications, from which distance-to metrics were calculated.  

Satellite-based datasets are collected from sensors measuring in a range of wavelengths, 
including the visible and microwave wavelengths of the electromagnetic spectrum. For the 
subset of covariates that are reliant on satellite imagery collected in the visible portion of the 
spectrum, consideration is given to features of interest that may be obscured on the imagery 
in some locations. For example, a road in a forested area, may be partially obscured in 
locations with particularly dense canopy cover.  

The geospatial covariates are generated from various sources and they each contribute some 
information related to the spatial distribution of population. All covariates are explored and 
interrogated in the covariate selection process. When combined within the statistical model, 
they enable reliable estimation of population.  

 

2.4.2 Creating 100m resolution geospatial covariates 
The main purpose of the covariates is to describe the landscape and environment at fine 
resolution. For this reason, we have generated them at 100m resolution to capture the fine 
spatial variations, but in the statistical modelling, these were aggregated up to CUs (i.e., to the 
level of the analyses).  

Initial covariate processing was carried out in Esri’s ArcGIS Pro (v.2.7). All covariates were 
standardized to a mastergrid, produced from a boundary of the national boundary obtained 
from the CU level administrative boundary shapefile provided by the NSO. This was buffered 
by ~100m to account for any discrepancies in the boundaries. 

As we produced a buffer, we needed to interpolate the values of missing raster cells from the 
input covariates where coverage did not match. In several cases, this was required to cover 
the national boundary, as many input covariate datasets did not match the boundary 
provided, an issue largely driven by Papua New Guinea’s complex coastline and numerous 
islands. The ArcGIS tool ‘nibble’ was utilised to interpolate missing coverage areas. 

Raster layers were then reprojected (where required) to match the projection and cell size of 
the mastergrid (100m resolution).  

As the final outputs for this projection were sub-national population estimates, the ‘Zonal 
Statistics’ tool in ArcGIS was used to calculate CU-level statistics – including mean, median, 
minimum, maximum and standard deviation.  
 

3. METHODS 

3.1 The statistical modelling process 
The modelling process consists of several steps and tasks (Figure 5). The first step is to collate 
the available and accessible survey and/or administrative boundary datasets. The tasks 
include cataloguing, data exploration, data cleaning, and variable recoding.   
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Figure 5: Modelling process chart. The iterative development arrow shows how the process 
was repeated multiple times to refine and improve model design before selecting final 
models. 

The second step is the preparation and stacking of predictor inputs such as the settlement 
data and the geospatial covariates. Settlement data (e.g. settled locations, settlement density 
or intensity) is one of the most important predictor types as they are known to directly 
influence the population distribution (Leasure et al., 2020). Other geospatial covariates 
describe the fine spatial variation of the landscape, which can be associated with or directly 
influence population densities. For these covariates to be included in the modelling, certain 
criteria must be met – they must have a significant influence on the population spatial 
distribution, they must have values for the entire area, and they must include geographical 
information on location. Land use/land cover, topographical and climatic variables for 
example are often used as geospatial covariates. When these are prepared, the covariate 
selection process starts to find the best predictors and thus to create a parsimonious model 
(i.e., the simplest model with the best explanatory predictive power).  

The third step starts building the population estimation model. It begins with data integration 
and testing of alternative model structures (usually from simple to complex), using various 
sets of geospatial covariates. Population modelling is an iterative process, and thus, steps 1-
2-3 are repeated (i.e., finding new observations to fill the gaps, refining the settlement data, 
creating better covariates) until the model design becomes satisfactory.  

As soon as a few well performing model structures are created, the fourth step starts. Here, 
the models are scrutinised with statistical performance tests, and the best model is identified. 
Further tests are done on this final model, including cross-validation to test that the model 
structure is robust and is not under- or over-fitted to the observations. Predictions into the 
unsurveyed areas are completed using the trained final model, and the model uncertainties 
are quantified. Thus, in summary, specific modelling steps utilised in this project are: 

1. Select the best geospatial covariates for each of the response variables - building 
intensity, population count and population density using stepwise regression 

2. The selected covariates are then used to fit the final models. 
3. Predicted building intensity is used to calculate the population density thereby 

accounting for the variability and gaps within the dataset.  Models for negative 
Binomial and Quasi-Poisson do not need building intensity as input as the response 
variable is the population count and not the population density.  
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3.2 Data preparations 
The data preparation steps included (i) topological checks on administrative boundaries, (ii) 
matching survey data cluster ids with CU ids, (iii) aggregating the Planet settlement data to 
100m resolution grids, (iv) selecting the best performing geospatial covariates, and (v) 
integrating all data sources to a joint database. All data preparations were done in ArcGIS pro 
(Esri, 2018), QGIS (QGIS Development Team, 2022) using R (R Core Team, 2021). 

 

3.2.1 Topological checks on administrative boundaries  
Topological checks were carried out in both Esri’s ArcGIS Pro (v.2.7) and QGIS (v.3.20) on the 
administrative boundary shapefiles – both those provided for us and those we generated by 
aggregating them. The ‘Topology Checker’ plugin and ‘Fix geometries’ tool in QGIS, and the 
'Check geometry’ tool in ArcGIS Pro were utilised. A topology was also created within the 
ArcGIS Pro project geodatabase to identify errors. 

Identified topological errors included gaps, overlaps, duplications and missing polygons. In the 
original census-unit shapefile, there existed a single ward (Bonkembil/Maskabil) that 
extended beyond the national boundary given in the LLG shapefile. Communications with the 
NSO confirmed this was incorrect and it was removed accordingly. There were also cases 
where the LLG and census-unit shapefiles did not agree. All CUs should fit within the LLG 
boundaries however there were instances where the LLG boundaries cut through some CU 
boundaries. Communications with the NSO clarified the correct boundaries.  

 

3.2.2 Matching survey data cluster ids with CU ids 
Each of the 32,100 CUs of PNG is identified by a geocode – an 11-digit code consisting of 
the province, district, LLG, ward and CU code: 

 

Given the frequent re-naming and re-coding of administrative boundaries in PNG it was 
found that geocodes and names across administrative boundary shapefiles and population 
survey datasets did not always match. This presented an issue joining the malaria survey data 
(which was shared in CSPro format) to the shapefile. 

Unfortunately, not all administrative level identification code issues could be resolved. For 
example, there remain some CUs in the census-unit shapefile that share the same geocode as 
another (i.e., 10040282007, 14010108401, 11060226001, 11020102002, 08040202002, 
15040481007, 15020104003). To mitigate this issue unique IDs (from 1 – 32,100) were 
assigned to all CUs in both shapefiles and survey datasets to ensure there would be no 
double joins and give each CU a unique identifier.  

When joining the malaria dataset to the administrative shapefile, names were also used to 
join. Where the name was of highly similar spelling and the province code was the same, a 
join was confirmed. However, where names were similar and province codes were different 
(e.g., 01 & 10, 12 & 13) joins were not included. This emphasises the need to review and 
harmonise the administrative boundary identification system. 
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Data for 17,788 CUs were received from the malaria survey, of which 15,468 could be 
matched to the administrative boundary shapefile. Therefore, together with the 1,959 Urban 
Structural Listing CUs, there were 16,903 CUs available for training the population model. 
This model was then used to predict (estimate) populations in the 15,197 unsampled CUs 
(Figure 6). 

 

Figure 6: Map of Papua New Guinea showing all the 16,903 CUs with observations (green) 
and the 15,197 unsampled CUs (grey).  

 

3.2.3 Aggregating the Planet settlement data 
The tiled settlement data were first mosaiced into a single raster dataset covering the 
entirety of the PNG map. In the raw data, raster values run from 0 to 254, where 0 is 
NoData,1 is all non-settled grid cells and values increase with likelihood/frequency of a grid 
cell being classified as settled. To ensure that non-settled grid cells had a value of 0 and avoid 
confusion during modelling, a value of 1 was subtracted from all raster values, so that they 
ranged from 0 to 253. Settlement grid cell values (0 to 253) were summed to calculate an 
"intensity" of settlement measure, with the spatial resolution and grid cell alignment matching 
the mastergrid.  

Given the difference in coordinate systems and spatial resolution between the PNG 
mastergrid and the Planet settlement data, it was necessary to both re-project and resample 
the settlement data as part of this process. In resampling the Planet settlement data from 
4.77 m to ~100 m, grid cell values in the settlement data product were summed within each 
grid cell of the mastergrid. This was done by first creating a zonal raster where each grid cell 
in the mastergrid had a unique ID value. The coordinate system for the Planet settlement 
raster was also changed to WGS84 (EPSG: 4326) to be in the same as the mastergrid 
coordinate system. Zonal statistics (sum) were then calculated using the mastergrid zonal 
raster and the re-projected Planet settlement raster (both in WGS84). These summed values 
provide a settlement “intensity” measure at ~100m spatial resolution. 
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3.2.4 Selection of the potential model covariates 
As stated earlier, to achieve model parsimony we took steps to ensure that only the best set 
of covariates that significantly predicted population/population density were included in the 
final model. This was done in four steps. First, we carried out an extensive covariate selection 
process using a stepwise regression approach with both forward and backward movements 
(James et al., 2014; Bruce and Bruce, 2017). Here, covariate selection was based on fitting 
the appropriate generalized linear model (GLM; McCullagh and Nelder, 1989) to the data, 
first combined with all the 52 geospatial covariates prepared for the population modelling.  

For the model utilising settlement information through building intensity, we assumed a 
Gaussian distribution for the natural logarithm of the building intensity 𝐵! that is, log(𝐵!) ∼
𝑁𝑜𝑟𝑚𝑎𝑙(𝐵.! , 𝜎"#) . Then, within the context of the GLM, the mean parameter  𝐵.! was linked to 
the 𝐾 geospatial covariates with the identity link function through the linear predictor  

		𝐵.! = 𝜂!
(") = 𝛽&

(") +7𝛽'𝑥!,'

)

'*+

																																																														(1) 

where 𝛽&
(") is the intercept or the baseline building intensity when the effect of the geospatial 

covariates is zero; and (𝛽+, … , 𝛽)) are the fixed effects coefficients of the 𝐾 geospatial 
covariates (𝑥+, … , 𝑥))  assumed to significantly influence the response (e.g., building intensity).   

Similarly, the population density 𝐷! 	(= 𝑁!/𝐵=!)  is assumed to be Gamma distributed, that is, 
𝐷! ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), where 𝑁! is the number (count) of people within the ith unit;  𝐵=! is the 
predicted building intensity for the ith unit; and 𝛼 > 0 and 𝛽 > 0, are the shape and rate 
parameters, respectively. Then, the mean parameter 𝜗 = 𝛼/𝛽 is linked to the 𝐽 geospatial 
covariates with the log link function through the linear predictor 

  ln(𝜗) = 𝜂!
(,) = 𝛽&

(,) +7𝛽-

.

-*+

𝑥!,-                                                    (2) 

where  𝛽&
(,) is the intercept or the baseline population density when the effect of the J 

geospatial covariates is zero; and (𝛽+, … , 𝛽.) are the fixed effects coefficients of the 
geospatial covariates (𝑥+, … , 𝑥.).  

Note that the model description above is a two-step process used for modelling the building 
intensity as Gaussian and the population density as Gamma, hence the name Gamma-
Gaussian. The model borrows strength from the building intensity, which provides a proxy 
measure of the settlement intensity.   

An alternative modelling approach is to consider using modelling structures which do not 
employ settlement intensity information. In this case, the model is defined in terms of the 
population count (response variable). Considering the inherent overdispersion within the 
data, we assumed that the population count 𝐶! is Negative Binomial distributed, that is, 𝐶! ∼
NegativeBinomial(𝜇! , 𝜙), where 𝜇! and 𝜙 are the mean and the overdispersion parameters, 
respectively. Then, the mean parameter 𝜇! is linked to the 𝑀 geospatial covariates with the 
log link function through the linear predictor 

  ln(𝜇!) = 𝜂!
(/) = 𝛽&

(/) + 7 𝛽0

1

0*+

𝑥!,0                                                   (3) 
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where 𝛽&

(/) is the intercept or the baseline population count when the effect of the M 
geospatial covariates is zero; and (𝛽+, … , 𝛽1) are the fixed effects coefficients of the 
geospatial covariates (𝑥+, … , 𝑥1). The models defined above are fitted in R using glm() function 
(equations 1 & 2) and glm.nb() function for equation 3. Then, variable selection based on each 
model was carried out via the stepAIC() function of the ‘MASS’ package using the direction 
option ‘both’. By using both the forward and backward directions, the likelihood of missing 
any key covariate becomes significantly small. 

In the second step, further checks were carried out on the covariates identified as best in 
step 1, focussing on the issue of multicollinearity which could inflate variance and ensuring 
that this does not arise. To do this, we used the ‘vif’ function of the ‘car’ package. In line with 
the rule of thumb, vif values less than 5 should be deemed acceptable, while values above 5 
are indicative of potential multicollinearity (James et al., 2013). High ‘vif’ value covariates 
were then discarded before the further assessments were made.   

Furthermore, we refitted the generalized linear model (GLM) in equation (1) using the 
selected covariates in the third step and examined the coefficients of the parameter 
estimates for redundancy and any covariates that did not significantly influence response 
variable were discarded.  

Finally in step four, we visually inspected the correlation matrix of the covariates as a final 
check for multicollinearity. Note that throughout the analyses, covariates selection was 
carried out before the actual model fitting.  

Ultimately, 13 covariates were chosen as the best predictors of building intensity, while 15 
covariates were identified as providing the best fit for both the population density and 
population count models (Table 2). In Figure 7, we show the correlation matrix of the 15 
covariates adopted in the final density and population count models, which indicate moderate 
correlations among the covariates. Further descriptions of the final covariates are provided in 
Table 2. 

 
Figure 7. Correlation matrix for A) Final covariates for building intensity model, B) Final 

covariates for population count and density models. The colour green indicates positive and 
purple negative correlation. The size of the squares indicates the strength of the correlation. 
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Table 2: The final model covariates selected via stepwise regression 

Variable Description Population 
count model 

Population 
density model 

Building 
intensity 

model  
X3 Mean total daily precipitation ✓ ✓ ✓ 
X11 Baseflow Index 1 ✓ ✓  
X15 Baseflow Recession ✓ ✓ ✓ 
X27 Motorized friction surface   ✓ 
X29 Distance to health providers ✓ ✓  
X30 Distance to local roads ✓ ✓ ✓ 
X31 Distance to main roads ✓ ✓ ✓ 
X32 Distance to marketplace ✓ ✓  
X33 Distance to places of education   ✓ 
X34 Distance to places of worship   ✓ 
X35 Distance to aquatic vegetation areas ✓ ✓ ✓ 
X36 Distance to artificial surface edges ✓ ✓ ✓ 
X38 Distance to cultivated areas   ✓ 
X39 Distance to ESA-CCI-LC inland water ✓ ✓  
X45 Distance to OSM major waterways ✓ ✓  
X46 Distance to shrub area edges ✓ ✓ ✓ 
X48 Distance to woody areas ✓ ✓  
X50 Resampled DMSP-OLS night-time 

lights 
  ✓ 

X51 Resampled VIIRS night-time lights ✓ ✓  
X52 Slope ✓ ✓ ✓ 

Note: 15 covariates were selected for both the population count and density models, while 13 
covariates were selected for the building intensity model.  

 

3.3 Model building 
Bottom-up population modelling methods use geo-located survey data of population from a 
sample of locations with the goal of estimating and predicting the population into other 
unsampled areas. A statistical model is fitted to these data to estimate population size in 
unsampled areas, based on the association with spatial covariate information (Leasure et 
al.,2020 and Wardrop et al., 2018). 

In its simplest form, the population of people in a given area of interest is defined as 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑒𝑜𝑝𝑙𝑒
𝑠𝑒𝑡𝑡𝑙𝑒𝑑	𝑎𝑟𝑒𝑎

× 𝑠𝑒𝑡𝑡𝑙𝑒𝑑	𝑎𝑟𝑒𝑎																																(4) 

where the first term, number of people per settled area, is the population density. Note that 
the ‘settled area’ in equation (4) can be any covariate that sufficiently defines the population 
density, e.g., the total area occupied, number of buildings, number of households, building 
intensity. 

Given that population data are count data, a natural assumption is that the data follow a 
Poisson distribution with equal mean and variance. Then the geostatistical hierarchical model 
is given by 
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𝑌! ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!) 

log(𝜆!) = 𝛽" +1𝛽#𝑥!#

$

#%&

+ 𝑓'()*+(𝑠!) + 𝑓*,'()(𝑠!) 

𝜋(𝛽") ∝ 1 

𝛽# ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇- , 1/𝑡𝑎𝑢-) 

𝑓*,'() ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 A0,
1

𝜏*,'()
D 

																																																								𝜏. ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼/, 𝛽/), where 𝑗 ∈ {𝛽, 𝑢𝑛𝑠𝑡𝑟}														(5) 

where 𝑌! and 𝜆! are the total and average number of people in area 𝑖; 𝛽& and (𝛽+, … , 𝛽2) are 
the intercept and the fixed effects coefficients of some L geospatial covariates (𝑥+, … , 𝑥2); 
𝑓345674(𝑠!) and 𝑓68345(𝑠!) are spatially correlated and spatially independent random effects 
with respect to a given location. Note that for point-level observations, 𝑠! is the longitude-
latitude of the observation point, while for areal level observations 𝑠! is the centroid. 
Including the decomposed spatial random effects is in line with the first law of Geography, 
which states that locations that are close to each other are more similar in characteristics 
than those that are further apart (Tobler, 1970). Thus, this ensures that random effects due 
to areas that share common boundaries and are therefore more likely to be similarly affected 
by factors such as migration/displacement due to unrest, unfriendly climate, etc. are explicitly 
accounted for.  

Within the context of the integrated nested Laplace approximation (INLA, Rue et al., 2009), 
the structured or correlated spatial random effect 𝑓345674(. ) is a Gaussian random field (GRF) 
given by  

𝑓345674 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙c0, Σ(𝜓)f																																																																						(6) 

where Σ(𝜓) is a dense isotropic distance dependent covariance matrix of the Matérn family  

𝐶9(𝑠) =
:!

;(<)#"#$
c𝜅||𝑠! − 𝑠-||f

9𝐾9(𝜅||𝑠! − 𝑠-||)	                          (7) 

where Γ is a gamma function; 𝐾9 is the modified Bessel function of the second kind; 𝜈 and 𝜅 
are the parameters of the covariance; ||𝑠! − 𝑠-|| is the Euclidean distance between spatial 
locations 𝑠! and 𝑠-. The INLA-SPDE approach circumvents the well-known computation big ‘n’ 
problem associated with Σ(𝜓) and reduces the computational cost from 𝑂(𝑛=) by 
approximating the GRF using a more sparse Gaussian Markov random field (GMRF) by 
discretizing the continuous space using a mesh (Rue and Held , 2005). However, one key 
condition under which equation (5) is valid is that the mean and the variance of the data are 
equal (McCullagh and Nelder 1989). This condition is rarely met within the context of 
population modelling due to overdispersion of data, that is, 𝐸(𝑌) ≠ 𝑣𝑎𝑟(𝑌). In other words, 
population data are inherently overdispersed and the use of statistical models, which 
explicitly account for this, is often required. In which case, we have  

																																										𝑌! ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐷! × 𝐵!)																																			(8)		 

where 𝐷! and 𝐵!  are the population density and the building intensity, respectively. Usually, 
the density variable is assumed to follow a lognormal distribution (Leasure et al., 2020), 
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however, a Gamma distribution has also been shown to work well (Nnanatu et al., 2023). It is 
always recommended that the various models be tested and the best model is selected based 
not only on the structure of the dataset and the processes that generated it, but also on the 
statistical performance. For the lognormal distribution, 𝐷! ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝐷u! , 𝜎,#) where 𝐷u! and 
𝜎,# are the location and scale parameters respectively. 𝐷! ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), where𝛼, 𝛽 are the 
shape and rate parameters 𝐸[𝐷!] = 𝛼/𝛽, 𝑣𝑎𝑟(𝐷!) = 𝛼/𝛽#, then,𝐷u!  is linked to the geospatial 
covariates through the linear predictor 

					log(𝐷u!) = 𝜂!
(,) = 𝛽& +7𝛽'𝑥!'

+>

'*+

+ 𝑓34567(𝑠!) + 𝑓68345(𝑠!)																							(9)																						 

where (𝛽+, … , 𝛽+>) are the 15 geospatial covariates listed in Table 2 as the best predictors for 
population density.  

Note that equation 9 can be extended to include random effects for settlement type, 
provinces as well as their nesting structures, so that the full hierarchical model structure with 
population density is given by  

𝑌! ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐷! × 𝐵!) 

𝐷! ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼0 , 𝛽0) and  𝐷P! = 𝛼/𝛽 

log(𝐷P!) = 𝜂!
(0) = 𝛽" +1𝛽.𝑥!.

&3

.%&

+ 𝑓'()*+(𝑠!) + 𝑓*,'()(𝑠!) 		+ 𝑓((𝑡) + 𝑓(.5(𝑡, 𝑝) 

𝜋(𝛽") ∝ 1 

𝛽# ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇- , 1/𝜏-) 

𝑓*,'() ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 A0,
1

𝜏*,'()
D 

𝑓( ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1/𝜏() 

𝑓(,5 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙S0, 1, 𝜏(,5T 

𝜏. ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼/, 𝛽/), where 𝑗 ∈ {𝛽, 𝑢𝑛𝑠𝑡𝑟, 𝑡, 𝑡𝑝}														(10) 

 

where 𝑓4(. ) and 𝑓4,?(. ) are the settlement type and province-settlement type nested random 
effects respectively. Similarly, the full hierarchical model structure with building intensity is 
given by 

𝑌! ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐷! × 𝐵!) 

log(𝐵!) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝐵U! , 1/𝜏7) 

𝐵U! = 𝜂!
(7) = 𝛽" +1𝛽8𝑥!8

&9

8%&

+ 𝑓'()*+(𝑠!) + 𝑓*,'()(𝑠!) 		+ 𝑓((𝑡) + 𝑓(.5(𝑡, 𝑝) 

𝜋(𝛽") ∝ 1 
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𝛽# ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇- , 1/𝜏-) 

𝑓*,'() ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 A0,
1

𝜏*,'()
D 

𝑓( ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1/𝜏() 

𝑓(,5 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙S0, 1, 𝜏(,5T 

𝜏. ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼/, 𝛽/), where 𝑗 ∈ {𝐵, 𝛽, 𝑢𝑛𝑠𝑡𝑟, 𝑡, 𝑡𝑝}														(11) 

Then, the predicted population count is given by  

𝑦W! = 𝐷X! × 𝐵Y! 																																																																			(12) 

where  

𝐷X! = exp	(𝛽" +1𝛽.𝑥!.

&3

.%&

+ 𝑓'()*+(𝑠!) + 𝑓*,'()(𝑠!) 		+ 𝑓((𝑡) + 𝑓(.5(𝑡, 𝑝)) 

and  

𝐵Y! = 𝛽" +1𝛽8𝑥!8

&9

8%&

+ 𝑓'()*+(𝑠!) + 𝑓*,'()(𝑠!) 		+ 𝑓((𝑡) + 𝑓(.5(𝑡, 𝑝) 

Furthermore, for the models with population count as the response variable, two further 
assumptions were made about the variance of the observations.  

First, we assumed that the mean of the observed counts has a quadratic relationship with the 
variance in which case the hierarchical structure of the model is described based on a 
Negative Binomial model as  

𝑌! ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜇! , 𝜙) 

log(𝜇!) = 𝜂!
(:) = 𝛽" +1𝛽.𝑥!.

&3

.%&

+ 𝑓'()*+(𝑠!) + 𝑓*,'()(𝑠!) 		+ 𝑓((𝑡) + 𝑓(.5(𝑡, 𝑝) 

𝜋(𝛽") ∝ 1 

𝛽# ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇- , 1/𝜏-) 

𝑓*,'() ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 A0,
1

𝜏*,'()
D 

𝑓( ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1/𝜏() 

𝑓(,5 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙S0, 1, 𝜏(,5T 

𝜏. ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼/, 𝛽/), where 𝑗 ∈ {𝛽, 𝑢𝑛𝑠𝑡𝑟, 𝑡, 𝑡𝑝}														(13) 

where 𝜇! and 𝜙 are the mean and the dispersion parameters, respectively.  

The second assumption is that the mean population count has a linear relationship with the 
variance of the observation. We specified this using a Poisson distribution with an 
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observation-level random effect, also known as, quasi-Poisson with the full hierarchical 
modelling structure given by 

𝑌! ∼ 𝑄𝑢𝑎𝑠𝑖 − 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆! , 𝜙!) 

log(𝜆!) = 𝜂!
(:) = 𝛽" +1𝛽.𝑥!.

&3

.%&

+ 𝑓*,'()(𝑠!) 		+ 𝑓((𝑡) + 𝑓(.5(𝑡, 𝑝) +	𝜉! 

𝜋(𝛽") ∝ 1 

𝛽# ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇- , 1/𝜏-) 

𝜉! ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜙) 

𝑓( ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1/𝜏() 

𝑓(,5 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙S0, 1, 𝜏(,5T 

𝜏. ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼/, 𝛽/), where 𝑗 ∈ {𝛽, 𝑢𝑛𝑠𝑡𝑟, 𝑡, 𝑡𝑝}														(14) 

Note that for both the Negative Binomial and Quasi-Poisson models, the predicted 
population is obtained by back-transforming the linear predictor as exponential. For each of 
the models defined in equations 9 through to 14, the response variable (e.g., building 
intensity, population count, population density) is assumed to be conditionally independent of 
the generic latent field	𝒘 = (𝜂, 𝛽&, 𝜷, 𝑓4 , 𝑓4?, 𝑓34567 , 𝑓68345) and the hyperparameters 𝜽 =
(𝜏4 , 𝜏4,?, 𝜏@) so that joint posterior distribution of the latent fields and the hyperparameters 
given the data is given by 

𝜋(𝒘, 𝜽|𝑦) ∝ 𝜋(𝜽)𝜋(𝒘|𝜽)j𝜋(𝑦!|𝑤!𝜽)
!∈<

																																			(15) 

where 𝜋(𝜽) is the prior distribution, 𝜋(𝒘|𝜽) is a latent Gaussian model (LGM), and 𝜋(𝑦|𝑤, 𝜃) is 
the likelihood function of observing the data given the latent field and the hyperparameters. 
The posterior distribution is then approximated and evaluated using INLA-SPDE as already 
stated above. 

To implement the INLA-SPDE approach, we first built the triangulation of the entire spatial 
domain also known as a mesh. The 695 nodes mesh used for our models is given in Figure 8.  
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Figure 8: The Delaunay Triangulation of PNG (Mesh) used for the INLA-SPDE 
implementation with 695 nodes. 

The observations are then projected to the mesh nodes using the projection matrix. See Rue 
and Held (2005) for more information on the use of GMRF via mesh.  For full Bayesian 
inference, we assigned the following prior distributions to the parameters and 
hyperparameters 

𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.01) 

𝜏' ∼ 𝐺𝑎𝑚𝑚𝑎(1, 0.00005) 

where 𝑘 ∈ {𝑡, 𝑡𝑝, 𝛽. 𝑢𝑛𝑠𝑡𝑟, 𝑠𝑡𝑟𝑢𝑐}. 

 

3.3.1 Sampling from the joint posterior distribution  
To improve estimates of the posterior marginal distribution 𝜋(𝜃!|𝜃A! , 𝑦), we drew =2000 
samples from the joint posterior density 𝜋(𝜽|𝒚). In line with the Rao-Blackwellization theory 
(Robert & Roberts, 2021; Blackwell, 1947; Rao, 1945), drawing samples from the conditional 
distribution of the parameter 𝜃+, say, and then averaging over all the iterations will normally 
improve the estimation of the marginal distribution 𝜋(𝜃+|𝜃#, 𝑦).  

In addition, within the context of population modelling, interest is usually focussed on having 
estimates of population totals at various administrative levels, ideally with the corresponding 
measures of uncertainties that can be valuable for policy design and implementation. While 
INLA automatically calculates the 95% credible intervals for the mean values, it is not 
straightforward to obtain the same for the sum of the means (total) because the sum of 
quantiles is not the same as the quantile of totals. To obtain the quantile of the totals, we 
need to generate a distribution of the totals and then calculate the quantities of interest.  

 
3.3.2 Model code  
All model calculations were done in ‘R’. The scripts of the final model can be downloaded 
from GitHub (https://github.com/wpgp/PNG_Bottom_Up_Modelling). 
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3.4 Age/sex disaggregation 
Population pyramids for administrative units (i.e., LLG, district and province levels) were 
initially produced using age/sex observations from the malaria survey data. The survey data 
contained missing age and sex information, which was denoted as both “99” and “NA” in the 
dataset. Following NSO confirmation that “99” in the dataset represented missing values, all 
these values were changed into “NA”. NA values were then removed before the age-sex 
proportions were calculated.  

Besides the missing age or sex values of the observations, the initial survey dataset was also 
spatially incomplete. As age/sex pyramids were required for every LLG, a method for 
estimating the LLG level age/sex distributions was developed.  

To do this, the survey data and the administrative units from the shape files were combined 
by administrative unit identifiers to create a complete list of LLGs. The joined file had the 
complete set of the LLGs, however only 16,903 CUs had any age and sex data.  

To take account of this missing data, the population pyramid of these administrative units 
were replaced by the next level up population pyramid, if it was complete, assuming 
therefore that the demographic characteristics are the most similar. Therefore, LLG pyramids 
were replaced by district pyramids, and district pyramids were replaced by province 
pyramids, if needed. Because all population pyramids at province level were complete, these 
were used as a last resort. The malaria data based observed age/sex pyramid at national level 
is shown in Figure 9.  

Finally, the age-sex proportions (i.e., population pyramids at LLG level) were applied to the 
population estimates (i.e., total LLG population) to allocate the modelled total populations to 
the different age-sex classes. 

All calculations were undertaken in R.  

 

Figure 9: Observed age/sex proportions in the Malaria dataset 
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4. RESULTS 
The following subsections will summarise the performance and outputs of the three INLA 
model applications:  

• Gamma-Gaussian (abbreviated as GG) – which uses a two-step process by first 
modelling and predict building intensities in inhabited areas that were covered by tree 
canopies and could not be captured by the camera. Then using the predicted building 
intensity, more reliable estimates of population density and hence population counts, 
are obtained.  
 

• Quasi-Poisson (abbreviated as QP) – which accounted for overdispersion within the 
data by assuming that the variance of the observations is linearly related to the 
geospatial covariates. Observation-level random effect was included to account for 
the variabilities in the observation due to differences in census units.  
 

• Negative Binomial (abbreviated as NB) – which assumes that the observed count has 
a negative binomial distribution and that there is a quadratic relationship between the 
observation variance and the model covariates. The NB model has in inbuilt 
parameter for estimating data overdispersion.  

The estimates will also be compared with the National Rotarians Against Malaria 
(RAM) data as an alternative estimate and with satellite imagery.  
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4.1 Model Fit Assessments and Cross-Validation 
4.1.1 Posterior Simulations  
The model chains are sufficiently exploring the posterior parameter space (Figure 10) which 
indicates good mixing. Sampling path plots and the associated histograms based on QP and 
NB are provided in the Appendix. 

 

 

Figure 10: Sampling paths plots of six randomly selected CUs for the posterior simulation 
based on the GG model. 
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The spatial surfaces of means and standard deviations of the QP and NB models are almost 
identical, unlike that of the GG (Figure 11). By including settlement information, the GG 
model had the advantage of fully exploring the heterogeneities across the various settled 
areas. 

 

Figure 11: Posterior estimates of the mean (left) and standard deviations (right) of the spatial 
random effects across the three models 

 

4.1.2 Model Cross-validation  
Cross-validation is when the model is trained multiple times using a randomly selected 
proportion of the observations, and the predictions compared against the remaining 
observations. Since the observations have inherent uncertainties, cross validation tests the 
robustness of the model to ensure that it is not over- or under-fitted. Overfitting occurs 
when the model does not just reproduce the information from the observations but also 
includes noise. Testing the robustness of the model is important as the model may be 
required to accurately predict population for additional study sites.   

Cross-validation metrics for training ten times using a randomly selected 80% of the 
observations are shown below in Table 3 and in Figure 12.  In this study model validation was 
undertaken at three-levels – model, simulation and train-test level. First, how well the 
population estimates from the model predicted actual observed values was assessed. Second, 
the fit of the posterior estimates of population (based on the 2 × 10= simulations) across the 
three models to the observed data was evaluated. Finally, out-of-sample cross validation was 
achieved by randomly dividing the data into training (80% of the samples) and testing (20% of 
the subsamples). Models trained using the training subsamples were then used to predict the 
population values of the testing data.  



27 
 
Best model selection was based on the various model fit metrics used in this study – 
Accuracy, Absolute Bias, Mean Absolute Error (MAE), and the Root Mean Square Error 
(RMSE). For all but accuracy, the smaller the metric value, the better the model fits the data.  

All three models (GG, QP, NB) performed well in both in-sample and posterior simulations, 
however, the performance of the NB model in the cross validation dropped significantly 
(Table 3, Figure 8). The GG model slightly outperformed the QP model, therefore, the GG 
model was chosen as the best model. 

 

Table 3: Model fit assessment and cross validation 

Metric Model 
Model-based (in-
sample) 

Posterior simulation Cross-validation 

GG QP NB GG QP NB GG QP NB 

% 
Accuracy 

99.93 99.88 82.76 99.93 99.11 85.05 99.91 99.91 95.49 

ΔBias 0.41 1.2E-
6 

43.97 2.11 0.03 46.49 0.11 0.92 39.39 

RMSE 1.81 1.36 272.60 4.21 1.96 270.69 1.68 2.30 292.42 
MAE 0.76 1.05 148.18 2.45 1.33 152.49 0.96 1.67 184.75 
Imprecision 1.76 1.38 269.04 3.65 1.96 266.68 1.68 2.11 289.79 

Note. GG – Gamma-Gaussian; QP – Quasi-Poisson; NB – Negative Binomial. Posterior estimates 
were based on 2 × 10= posterior draws. Both the model-based and posterior simulation-based 
totals are similar and also within the 95% credible interval across the three models.  

 
Figure 12: Model fit and Cross validation across the three models. The GG and QP models 
provided better fit to the data than the NB model which did well at both model-based and 
simulation-based in-sample prediction but not as good at out-of-sample cross validation. 
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4.2 National-level Estimates 
 

The current projections for PNG for 2022 are 9.6 million (US Census Bureau, 2022) and 10.1 
million (UNDESA 2022).  

Table 4 shows the estimated national population for the three models. All estimates are very 
simlar, between 11 and 12 million with quite narrow credible intervalls. The best model (GG) 
estimates the national population as ~11.78M with 95% credible interval of (lower = 
~11.64M, upper = ~12.03M).  

The population model provides LLG level population estimates with national coverage for 
PNG, along with the estimate of the number of people belonging to different age-sex groups. 
These model-based population estimates most likely represent the time period around 2020-
21, corresponding to the malaria survey and Urban Structural Listing survey observations 
(2019-2021; median year: 2020) and the period when the satellite imagery used to generate 
settlement footprints was captured (2021). 

The national estimate of RAM is 9,776,518 (2021) for PNG. RAM visits most areas of PNG 
every three years, although they only focus on rural areas. Some areas are inaccessible due to 
conflicts and some very rural areas have geographical challenges to access. In these cases, 
RAM uses the last census results as a baseline and applies a spatially varying annual growth 
rate of 2.1-3.9 percent. Although this dataset is not officially approved, it is based on the 
most frequent observations collected during regular malaria bednet campaigns, and thus is 
shown as an alternative estimate.  

 

Table 4: Model-based and simulation-based national totals across the three models 

Model Population Estimates 
Model-based Posterior simulation-based 

 Total Total Lower Upper 
GG 11,705,452 11,781,559 11,644,772 12,028,038 
QP 11,430,876 11,429,300 11, 347, 392 11,532,996 
NB 11,225,746 11,185,397 11,060,366 11,327,769 

Note: GG – Gamma-Gaussian; QP – Quasi-Poisson; NB – Negative. Posterior estimates were 
based on 2 × 10= posterior draws. Both the model-based and posterior simulation-based totals are 
similar and also within the 95% credible interval across the three models.  
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4.3 Province-level Estimates 

 
Figure 13: Comparing provincial population estimates across the various models with the RAM data 

Population estimates are similar for 20 out of 24 provinces across the four models (Figures 
13 and 14). This somewhat increases the confidence in the model results. However, 
estimates of population totals across the various provinces differed widely between the RAM 
data and the three models for Hela, Southern Highlands, Milne Bay and Enga. These 
provinces would benefit from additional field surveys to confirm the true population size. 

 
Figure 14: Comparisons of the spatial surfaces of total population estimates across the three models and the RAM data. 

Estimates show relatively similar spatial trends 
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4.4 District-level Estimates 
 

The district level estimates for the three models are mostly similar to that of the RAM data, 
but with some exceptions (Figure 15). 

 
Figure 15: Comparing district level population estimates across the three models and the RAM data 
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4.2.5 Comparison with satellite images 

The CU level model results were compared to satellite images at a few locations in Port 
Moresby to check whether the residential / non-residential variations were captured well in 
the model. Figure 16 shows examples, and throughout the country these were typically well 
captured.   

 

 

 
Figure 16: CU level total population (left panel), Esri satellite image base layer with white CU boundary 

overlay (right panel) 
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4.3 Age/sex disaggregation results  
The population modelling work produced pyramids that characterise PNG’s populations as 
being predominantly young and growing (‘Expansive’). These types of pyramids are larger at 
the bottom and shrink with the increasing age groups. The estimated results indicate a 
slightly smaller under-five population than the next age group (Figure 17), which may suggest 
decreasing birth and death rates.   

The percentage of children and adolescents (under 15 years old), working age population (15 
to 65 years old) and elderly population (above 65 years old) to the total population are 
estimated to be 35.5%, 61.8% and 2.6% respectively. This is in line with the World Bank 
2021 estimations for the country (WorldBank WDI 2022).  

  

Figure 17: Age and sex pyramid of PNG national estimated population 

 

Estimated provincial population pyramids show similar results to the national trend, where 
younger age groups are more prevalent than the elderly population (see Appendix 4 for 
provincial population pyramids). Some provinces have a slightly deformed shape of an 
expansive population pyramid, particularly National Capital District (NCD), which displays 
more aging population trends than other provinces (Figure 20). NCD is assumed to be more 
developed and urbanised than the other provinces, which may have resulted in lower birth, 
death and fertility rates than others.  
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NCD's population pyramid estimate also shows a higher proportion of 25 to 29 year olds than 
the national pyramid or pyramids for other provinces. It is unclear whether this deformed 
shape is a result of the small sample size, or if the district is in different phase of demographic 
transition, or if the district attracts young adult workers. 

 

 

Figure 18: Age and sex pyramid of National Capital District, PNG estimated population 
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5 Discussion 
A two-step Bayesian hierarchical geostatistical model was applied to the PNG integrating 
recent 2019-2021 malaria bednet campaign data, urban structural listing 2021 data, and 
geospatial covariates to model and estimate population numbers at census unit level. The 
approach facilitated simultaneous accounting for the multiple levels of variability within the 
data hierarchy. The best fit model indicated that the total population of PNG based on the 
compiled datasets is 11.78M with a 95% credible interval of 11.64-12.03M, representing the 
years 2020-21. 

The modelling approach used in estimating the population of Papua New Guinea (PNG) 
initially gave rise to inflated population numbers (e.g. a national total of 17 million). It is 
believed that these inflated figures were derived from overdispersion of observations and the 
permanent canopy cover of some areas which obscured satellite imagery. See section 5.1 
below for more details. These initial findings suggested the need for the adoption of more 
advanced statistical techniques, and to continue with the iterative modelling process (Figure 
5). 

Three alternative statistical population models were explored: 

• A negative Binomial (NB) based model which includes an overdispersion parameter 
and can be independent of settlement information. This model thus did not use the 
Planet imagery-based settlement data. 

• A quasi-Poisson (QP) based model which is a modified version of the regular Poisson 
density but also includes an overdispersion parameter explicitly specified within the 
modelling framework. 

• A two-step model solution also called Gamma-Gaussian (GG) model which uses a 
model-based validated settlement information to calculate population density. 

These models were fitted within a Bayesian hierarchical modelling framework using the 
INLA-SPDE approach for efficiency. Following rigorous model fit assessments, posterior 
simulations and cross-validations, the GG model, which accounted for unobserved effect of 
settlement type, was selected to be the best fit model, largely due to its highest predictive 
ability.  

National estimates based on the Gamma-Gaussian (GG) model are, total = 11.78M (95%CI, 
lower = 11.64M, upper = 12.03M), while the national estimates based on the other models 
are 11.43M (11.35M, 11.53M) for Quasi-Poisson (QP) and 11.18M (11.06M, 11.33M) for 
Negative Binomial (NB) models. Although both QP and NB models provided narrower 95% 
credible bounds at the national level estimates than the GG model, GG provided the highest 
overall predictive ability. This is mostly because the GG model has the advantage of 
borrowing strength from settlement data, unlike the QP and NB models. Thus, the GG model 
was able to estimate population numbers in areas that both QP and NB models missed due to 
their model structures. This also explains why the GG-based estimates are slightly higher than 
that of QP and NB models.  

 

5.1 Issues with the previous model results explained   
Some previous iterations of the population model produced inflated national population 
numbers that received significant attention in the region (e.g. an estimate of 17 million for the 
country). The size of the variance of population data is usually larger than the size of the 
average population count. This is known as ‘overdispersion’, and population estimates based 
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on any statistical modelling technique that did not account for this inherent overdispersion is 
most likely to produce misleading results. To circumvent this, we model population counts in 
terms of population density (using settlement data) where population density is the number 
of people in a given area divided by the settled area (see previous sections for details on this). 
This simply ensures that estimates of population are calculated for settled areas only, thereby 
minimizing potential biases in the estimates.  

However, estimates of population density are only as good as the input settlement data used. 
A too high (or too low) value for settlement data results in a too small (or too large) estimate 
of population density in the areas of interest. While too low population density estimates will 
tend to underestimate the population, too high population density estimates will normally 
overestimate the population numbers. This latter issue arose in early model outputs, where 
results suggested an inflated estimate of 17 million. This was due to too low (or even zero) 
population intensity values in the Planet settlement data, mainly for locations that were 
obscured from the satellite observations due to forest canopy cover. 

Following standard scientific processes, a model testing and result triangulation approach was 
adopted (see figure 5). To provide independent (baseline) estimates of populations, advanced 
statistical methods were adopted that intrinsically accounted for overdispersion and avoided 
the use of the Planet settlement data. This was implemented using two different but related 
model solutions, as outlined above.  

Further, a robust two-step modelling technique was used that first corrected the potential 
biases in the Planet data by estimating under-canopy settlement areas, and then used this 
updated settlement information to calculate estimates of population density. All three 
approaches resulted in very similar national and lower admin levels (Provinces, Districts & 
LLGs) total population, between 11 and 12 million at the national level.   

Following rigorous model fit assessments and model validation exercises (i.e. following the 
iterative processes outlined in figure 5) the best performing model that the project team have 
the highest level of confidence in was selected as providing the final result, with an estimated 
11.78 million population at national level (95% credible interval: 11.64-12.03M). 

 

5.2 Limitations 
These population estimates most likely represent the 2020-21 time period, but because of 
the different ages of the input data used to build the model, a precise time point cannot be 
allocated. Most of the population observations came from 2020, but the most recent data 
were from 2021. The settlement data also reflected 2021. This settlement data primarily 
determined the spatial distribution of the gridded population estimates, whereas the 
observations defined the magnitude of population. This model assumes that population 
densities and age/sex distributions observed during the earlier time period are still 
representative of the more recent period. 

Since the survey data were not geolocated (i.e., there were no GPS points or cluster 
boundaries), the NSO’s CU boundaries were adopted as the most accurate representation of 
survey locations. There was an overlap of 524 CUs within the two survey datasets. As they 
did not exactly match and none of them were consistently higher or lower than the other an 
average in the overlapping CUs was calculated and used in the population model. This 
represents an area of uncertainty that requires further investigation. 
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It is known that some settlements are under permanent canopy cover and were not captured 
in the Planet settlement data. This is a limitation common to all population modelling efforts 
of this type that are based on imagery, though the statistical modelling approaches put 
forward here recognise this and aim to limit the impacts. To remedy this, CU was adopted as 
the lowest spatial scale in the modelling. Settlement locations were used instead of Planet 
data as a direct input, and alternative model estimations were implemented with and without 
settlement data to check the validity of the model results. 

Among the limitations, it is important to note that due to lack of data on such factors, the 
estimates provided do not explicitly account for population migration. 

 

8. CONCLUSIONS AND RECOMMENDATIONS  
Census-independent high resolution population estimates were produced for PNG using 
household survey datasets and other geospatial data using a novel satellite-image-based 
statistical methodology. The 2020-21 total estimated population is 11.8M with a 95% 
credible interval of [11.6-12M]. This relatively narrow interval implies high confidence in the 
result, but field validation is still recommended due to uncertainties in the input datasets.  

Population models have inherent biases and unquantified errors even when a set of models 
point to the same result. Furthermore, population models will never be able to compete with 
the accuracy and data richness of a high quality population and housing census, and 
therefore, this exercise should not be seen as a replacement for the upcoming population and 
housing census.  

Estimates of population totals broadly agreed with the RAM estimates across 20 of the 24 
provinces; however, provincial totals differed significantly between the RAM data and the 
three models for Hela, Southern Highlands, Milne Bay and Enga. Therefore, we recommend 
extra data collection exercises in these affected provinces.  

The analyses represent the first of their kind in PNG and could (i) support the preparations 
for the upcoming population and housing census, (ii) provide a method for producing 
estimates in any areas not able to be enumerated in the upcoming census, (iii) and provide a 
mechanism to make use of routine surveys in inter-censal periods to update population 
estimates at small area scales. A recent co-authored UNFPA-WorldPop report outlines the 
opportunities that spatial modelled population estimate methods offer to support the census 
process: https://www.unfpa.org/resources/value-modelled-population-estimates-census-
planning-and-preparation. 

 

CONTRIBUTIONS 
These data were produced by the WorldPop Research Group at the University of 
Southampton in collaboration with the National Statistical Office of PNG and UNFPA under 
the project called “Population-modelled estimation for Papua New Guinea in collaboration 
with the National Statistical Office, 2021-22” (PNG40-0000004504). Initial statistical 
modelling was done by Hal Voepel while the final statistical modelling was designed, 
developed, and implemented by Chris Nnanatu. Data processing was done by Amy Bonnie 
with additional support from Tom Abbott, Tom McKeen, Heather Chamberlain, Ortis Yankey, 
Duygu Cihan and Assane Gadiaga. Project oversight was done by Attila Lazar and Andy 
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Tatem. Household survey listing data were provided by the National Statistical Office, and 
the settlement footprint was generated by Planet. 

LICENSE 

These data may be redistributed following the terms of a Creative Commons No Derivatives 
Attribution 4.0 International (CC BY-ND 4.0) license.  

 

The authors followed rigorous procedures designed to ensure that the used data, the applied 
method and thus the results are appropriate and of reasonable quality. If users encounter apparent 
errors or misstatements, they should contact WorldPop at release@worldpop.org. 
  
WorldPop, University of Southampton, and their sponsors offer these data on a "where is, as is" 
basis; do not offer an express or implied warranty of any kind; do not guarantee the quality, 
applicability, accuracy, reliability or completeness of any data provided; and shall not be liable for 
incidental, consequential, or special damages arising out of the use of any data that they offer. 

 

SUGGESTED CITATION 
WorldPop and National Statistical Office of Papua New Guinea. 2022. Census-independent 
population estimates for Papua New Guinea (2020-21), version 1.0. WorldPop, University of 
Southampton.  
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APPENDIX 1: Initial covariate characteristics and source links 
 

Covariate Date Unit Source Link 

Slope 2000 Degrees WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=23186 

Elevation 2000 Metres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=23435 

Resampled VIIRS night-time lights 2016 
nanoWatts/
cm2/sr WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=18704 

Distance to IUCN strict nature 
reserve and wilderness area edges 2017 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=18215 

Resampled DMSP-OLS night-time 
lights 2011 

Unit of 
radiance 
ranging 
from 0-
6300 WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=18953 

Distance to open-water coastline 2020 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=23933 

Distance to ESA-CCI-LC inland 
water 2012 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=24182 

Distance to cultivated areas  2015 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=22937 

Distance to woody areas 2015 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=22937 

Distance to shrub area edges 2015 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=22937 

Distance to herbaceous areas 2015 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=22937 

Distance to sparse vegetation areas 2015 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=22937 

Distance to aquatic vegetation areas 2015 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=22937 

Distance to artificial surface edges 2015 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=22937 

Distance to bare areas 2015 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=22937 

Distance to OSM major road 
intersections 2016 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=17717 

Distance to OSM major waterways 2016 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=17966 
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Distance to OSM major roads 2016 Kilometres WorldPop 

https://www.worldpo
p.org/geodata/summa
ry?id=17468 

Distance to main roads 
2016-
2021 

Decimal 
degrees OSM 

https://download.geo
fabrik.de/australia-
oceania/papua-new-
guinea.html 

Distance to local roads 
2016-
2021 

Decimal 
degrees OSM 

https://download.geo
fabrik.de/australia-
oceania/papua-new-
guinea.html 

Distance to places of worship 
2016-
2021 

Decimal 
degrees OSM 

https://download.geo
fabrik.de/australia-
oceania/papua-new-
guinea.html 

Distance to places of education 
2016-
2021 

Decimal 
degrees OSM 

https://download.geo
fabrik.de/australia-
oceania/papua-new-
guinea.html 

Distance to health providers 
2016-
2021 

Decimal 
degrees OSM 

https://download.geo
fabrik.de/australia-
oceania/papua-new-
guinea.html 

Distance to marketplace 
2016-
2021 

Decimal 
degrees OSM 

https://download.geo
fabrik.de/australia-
oceania/papua-new-
guinea.html 

Motorized friction surface 2019 

Minutes 
required to 
travel 1 
metre MAP 

https://malariaatlas.or
g/explorer/#/ 

Walking friction surface 2019 

Minutes 
required to 
travel 1 
metre MAP 

https://malariaatlas.or
g/explorer/#/ 

Mean 2m dewpoint temperature 
2011-
2021 Celsius Copernicus 

https://cds.climate.co
pernicus.eu/cdsapp#!
/dataset/reanalysis-
era5-land-monthly-
means?tab=form 

Mean 2m temperature 
2011-
2021 Celsius Copernicus 

https://cds.climate.co
pernicus.eu/cdsapp#!
/dataset/reanalysis-
era5-land-monthly-
means?tab=form 

Mean total daily precipitation 
2011-
2021 Metres Copernicus 

https://cds.climate.co
pernicus.eu/cdsapp#!
/dataset/reanalysis-
era5-land-monthly-
means?tab=form 

Baseflow index (1), defined as the 
ratio of long-term base flow to total 
Q (Smakhtin 2001), computed from 
daily Q data using the recursive 
digital filter of Van Dijk (2010) with 
the ‘‘window size’’ set to 5 days   - GloH20  

http://www.gloh2o.or
g/gscd/ 
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Baseflow index (2) computed from 
daily Q data following the local-min 
method described in Pettyjohn and 
Henning (1979) and Sloto and 
Crouse (1996) with the ‘‘duration of 
surface runoff’’ N set to 5 days.   - GloH20  

http://www.gloh2o.or
g/gscd/ 

Baseflow index (3) computed from 
daily Q data using a 7-day moving 
min to derive base flow.   - GloH20  

http://www.gloh2o.or
g/gscd/ 

Baseflow index (4) computed from 
daily Q data following the 
procedure described in Gustard et 
al. (1992), which takes the minima at 
5-day nonoverlapping intervals and 
subsequently connects the valleys in 
this series of minima to generate 
base flow.   - GloH20  

http://www.gloh2o.or
g/gscd/ 

Baseflow recession constant, 
defined as the rate of baseflow 
decay (Vogel and Kroll 1996), 
computed from daily Q data as 
described in Beck et al. (2013b), 
with the ‘‘window size’’ set to 5 days 
and days with zero flow ignored.   day-1 GloH20  

http://www.gloh2o.or
g/gscd/ 

Daily flow percentiles 
(exceedance probability) 
computed from daily Q data. 
The number refers to the 
percentage of time that the 
flow is exceeded. 

1 
  mm day-1 GloH20  

http://www.gloh2o.or
g/gscd/ 

5 
  mm day-1 GloH20  

http://www.gloh2o.or
g/gscd/ 

10 
  mm day-1 GloH20  

http://www.gloh2o.or
g/gscd/ 

20 
  mm day-1 GloH20  

http://www.gloh2o.or
g/gscd/ 

50 
  mm day-1 GloH20  

http://www.gloh2o.or
g/gscd/ 

80 
  mm day-1 GloH20  

http://www.gloh2o.or
g/gscd/ 

90 
  mm day-1 GloH20  

http://www.gloh2o.or
g/gscd/ 
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APPENDIX 2: Age-Sex population pyramids of provinces 
 

Figure A4.1: Age and sex estimated population pyramids by provinces 
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APPENDIX 3: Sampling path plots and the associated 
histograms 
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